
Matrix Solution: The DSP control equations can
be expressed using matrix algebra as shown in
Figure 1. Assume there are j states that need to
be evaluated, with k of them having a delay
history. The equations can be arranged as shown
with all trivial solutions at the bottom of the
matrix. Let Hn be the history value Hn. Then the
j+k by j sub matrix at the top will have its right
hand side equal to zero. After solving the matrix
the Vn values are substituted into the Hn RHS for
the next iteration. There may be more states than
history because some of the states may include
input and outputs. The main diagonal is scaled to
be 1 so that there is no divide required in the
solution. For large j, the matrix coefficients should
be sparse and non zero values should be near
the main diagonal. That’s equivalent to having a
number of blocks with a single input and output
cascaded. If the original matrix had non-zero
coefficients below the main diagonal, then the
matrix solves an algebraic set of simultaneous
equations. DSP’s can be made to have to all zero
values below the main diagonal by judicious use
of backward euler integration to break up the
signal flow. That has the side effect of adding
delays and reducing controller bandwidth.

LU decomposition, following the forward
substitution gives us exactly what’s needed [2].
Then backward substitution is a multiply
accumulate series for all non zero coefficients
followed by division by the main diagonal value. If
mixed precision is used, the main diagonal can
be normalized to unity; eliminating the division. If
integer or fractional scaling is used, the result can
be multiplied by a predetermined constant,
formed by dividing the scaling value by the main
diagonal value, then applying the inverse of the
scaling value to the outputs. The solution
proceeds from the jth row and j+1 column,
summing the products of the non-zero coefficient
with their associated states. An array of
coefficients is made in the order they will be used
and a corresponding array of state-pointers can
be made to make maximum use of the DSP
multiply accumulate capability.

const int16 coef[numRowCoef];
iInt16 * varptr[numRowCoef];
int16 Vn;
while (numRowCoef--)
 Vn += *Coef++ * *(*varptr++));

C compilers will figure this out; but there’s always
hand coded assembly language to fall back on.

For Reduced Instruction Set Computers, RISC, it
may be necessary to limit the range of variable
index change from one computation to the next.
This can be accomplished by moving the rows
with H coefficient up until they are just below the
first coefficient used in that column, and the

moving the column left to place the unit value on
the main diagonal. Such a movement doesn’t
change the Lower triangle zero condition; but it
tends to cluster coefficients along the main
diagonal. Then the varptr usage shown above is
replaced as shown below:

const int16 coef[numRowCoef];
iInt16 offset[numRowCoef];
int16 *varptr;
int16 Vn;
while (numRowCoef--)
 Vn += *Coef++ * *(varptr +
*offset++);

This form may need some adjustment depending
on how the C compiler does its optimization. If
the user identifies states that need a solution,
then unwanted states can be eliminated by matrix
manipulation. That reduces the number of MAC
initializations and result storage; making a faster
solution.

1

1

1

a12

1

1

1

1

a13 V1 0

0

0

V1p

Vkp

V3

0

0

0

...

...

0

0

0

...

...

0

0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0

a1j

a2j

a3j

a4j

ajj

a23

a34

... ...

0

0 0

0

V2

...

...

Vj

H1

H3

Hk

... ...

... a1(j+k)

a(j+k)(j+k)...

...

...

...

...

...

... ...

...

Figure 1, A matrix solution has RHS(0 thru j)=0

TODO: Extract matrix from spice
 Eliminate trivial data (0 current stuff)
 Eliminate unwanted states
 Code Generation
 If-then-else resolution

