
Using DSP Designer Code
Generators for the TI Piccolo DSP [5]

Background: DSP Designer builds upon a large
technological base. It assumes that you are
familiar with control system stability analysis
using Bode Plots [1]. Moreover, you need some
background in using z-transforms for the
controller functions [2]. The models shown in the
schematics are built upon large signal average
models that are described in technical literature
[3]. These models dispense with cycle-by-cycle
switching in favor of an average approach that
models the control system up to ½ the sampling
frequency. Average models speed the simulation
time and in many cases the simulation runs faster
than real time. Using the ICAP/4 schematic,
SpiceNet, requires studying the ICAP/4 getting
started manual [4]. The result is very impressive,
with one-button Bode Plots and transient
simulations running considerably faster than real
time and automatic code generation. This
document will lead you through the details of
operating the ICAP/4 user interface to
accomplish these tasks; however, you need to be
versed in the background technology in order for
these tools to be used to their greatest potential.

Schematic: A DSP controller can be embedded
in an ICAP/4 schematic. That’s done by using the
configuration capabilities of SpiceNet. First you
need to add 2 layers for each controller in the
schematic by selecting the “Options” menu,
“Layer…”. One layer will contain interface voltage
sources and node names. The other layer
consists of the z-transform controller portion of
the schematic. Then you must make a
configuration using the “Options”,
“Configurations…” menu for the “ExportDSP…”
operation that uses only these 2 layers. The other
configurations keep the controller parts but won’t
include the interface parts. Additional layers may
be needed for more complex controllers. The
name given to the configuration will be used by
the code generator to make the various “.c” , “.h”
and assembly files.

Files:
 <Config name>.h : Definitions
 <Config name>.c : Initialization
 <Config name+a>.asm : Assembly Code
 hardware.h : Hardware specific definitions

It is assumed the main portion of the DSP code is
in the C programming language. You will need to
add the appropriate initialization to that code
along with any special code to detect faults and
assist startup. Templates shipped with DSP
Designer include this code along with code
necessary for Real Time Communication. The

advantage of a C Language based approach is in
the ease of management of variable and data
structures. Assembly code is only used in the
high-speed interrupt service routines (ISR’s).

Sample Drawings: The DSP control algorithm
in MPID2.dwg is contained in the “MPID2”
configuration. This configuration obeys the rules
required for code generation. It is also used in the
“main” configuration where SPICE simulation
gives performance analysis using the AC, DOP
and TRAN analyses. To operate the schematic,
use the file explorer to go to the project folder
“…\Piccolo controlSTICK\DualSyncBuckBoost”
and double click on MDIP2.dwg. The toolbar
should look like Figure 1, showing the MPID2
configuration and the DSP analysis. The
configuration will be represented by
<config_name> in the following discussion. You
can change the name of <config_name> by
pressing the button to the left of the text box and
then the edit button.

Figure 1, MPID2 configuration and DSP analysis

This is the proper configuration for code
generation. Pressing the button to the left of the
DSP2 analysis brings up the Simulation setup
dialog shown in figure 2.

Figure 2, Simulation setup for the .dsp analysis.

Notice that the User Statement field contains the
SPICE directive for code generation. The syntax
is .DSP [arglist]. .DSP is an analysis type, just
like AC or TRAN. The [arglist] is an optional list of
white space delimited nodes, telling SPICE to
order the matrix solution such that these nodes

appear first in the matrix backward substitution or
solution order (the matrix is ordered in the
reverse of the arglist). IsSpice4 understands this
syntax and produces a triangular matrix using
gauss elimination that has the following
properties:

Numbered nodes are first in the state variable
order

Then non-trivial states (equations with more
than one coefficient)

Inputs, trivial states, Z-delay inputs

The critical factor in using this matrix solution
approach is that the system of equations is linear
so that the matrix right-hand-side, RHS is zero for
everything except the trivial nodes. Then the
matrix coefficients can be used over and over for
each solution time step. Before proceeding with
the solution, the ADC inputs and other inputs
must be fetched. After the solution, the Zdelay
inputs must propagate to their respective outputs.
By placing the numbered nodes first, their
solution can be bypassed, effectively eliminating
them from the matrix. All of this is done by the
code generator if you follow certain rules for the
code generator configuration.

Rules:

State Variables are identified as IsSice4
node names

Parts: Use only V-source, B-element, and
Zdelay components.

Nodes
Numbered, these states will not be

calculated
zi prefix for Zdelay inputs
zo prefix for Zdelay outputs
imbedded pwmx, identifies a pwm output

for channel x (1,2,3,4)
indx postfix, identifies an ADC input where

x=(0,1,2,…)
Parameters

PWMPERIOD, integer size of PWM for
unity duty ratio

radix, number of fractional bits in MAC
computation

refx, reference for indx (refx-ADCx)
LIMIT_HI+node, Hi Limit
LIMIT_LOI+node, Lo Limit
<config_name>_Statei.zox, init value for

node x

Parameters are algebraic calculations done in the
order present in the Parameters block shown on
the schematic. The .par files shows their
evaluation and is used by the code generator to
define state variable limits and the reference for
the input error signal and the PWM scale factor.
You can change the “.par” file accuracy placing:

.option paramdigits="# of digits for .par file"

in the User Statements field along with the .DSP
directive shown in Figure 2..

An important part of the DSP code is the
re_init_<config_name> function. This function
calculates the proper integrator initialization after
a successful ADC measurement. It’s call can be
found in main.c

Special cases: Connecting a Zdelay output to
another Zdelay input needs to use a B-element
with gain = 1 so that the prefix rules are obeyed.
If an indx postfix is used, the result is (refx -
<prefix>indx) and limiting is applied to that result.
These rules are error checked prior to running
the code generator. If errors exist, a dialog will
explain problems and the code generation will be
aborted. Detailed error description is in the “.err”
file.

Code Generator Results: Selecting “Export
DSP …” in the file menu brings up code
generation options. There are two TI code
generators. Both produce the same assembly
code; however, the register locations for the A/D
converter and PWM outputs are different. The
2812x part is much faster and more costly than
the Piccolo part. The discussion here will be for
the Piccolo part. Code generation begins by
selecting TI 28207x Piccolo. When completed
successfully, there will be 3 files added to your
project folder. The base name is derived from the
configuration name so for this case the files are
called MPID2.c, MPID2.h and MPID2a.asm. It’s
important to make the .asm file name different
from the .c file name because the TI compiler
produces 2 object or .o files, one from the .c
source and one from the .asm source. To use
this code you must do the following:

Add include “MPID2.h” to main.c
Add include “MPID2.h” to ISR.c
Add init_MPID2() to the end of the main.c

initialization
Add MPID2(); in the ISR.c file
Add MPID2.c and MPID2a.asm to your

project.

These additions have already been incorporated
for this example, but it’s a process you must
follow for different code generator files.
Remember, the code generator will over-write
these files so that you may want to rename them.
Using the wrong code generator could damage
your hardware.

Testing the Code Generator: It’s a good idea to
step through the code in the debugger before
running it in real time. To prevent damage to the
power components, you should

1. remove power from the PWM inputs and

2. uncomment the #define DISABLE_UVLO in
configure.h.

That disables the under voltage lockout so that
the control algorithm will run. Then place a
breakpoint at MPID2(); in ISR.c. Then from the
IDE:

1. Project\Rebuild all,
2. Debugger\connect and
3. file\ Load Program…

debug\DualSyncBuskBoost.out.
Be aware that IsSpice produces a “.out” file in the
project. You must use the “.out” file produced by
the code composer studio IDE located in the
release or debug folder. Then

4. Debug\Go Main followed by
5. F5 to run the code.
6. Step into the assembly code, stopping

at ADDB XAR4, #2.
7. Then open a watch window and enter

values shown in Figure 3.
That initializes the values to something unique so
that you can confirm the proper MAC operations
as you step through the code. The comment
before the MAC instruction in file “MPIDa.asm”
indicates the state that should be pointed to by
XAR4 and the coefficient pointed to by XAR7.
Coefficients are pretty easy since they should
step through in order. States are also
straightforward when the matrix is being solved
from left to right (pState++). However, the TI DSP
doesn’t do post decrement, only pre decrement
so that *--XAR4 points to the state at *XAR4 and
the one being use is at XAR4-1.

Figure 3, initial values.

Once you are satisfied that the code is correct
(This example has been tested and is correct)
you can proceed to run in real time.

1 Comment out DISABLE_UVLO in file
“configure.h” and

2. Remove Comment from SAFE_START

SAFE_START will turn the PWM’s off after
approximately 3 msec if the error signal is outside
of limits specified in main.c.

References

[1] H.W.Bode, “Network Analysis and Feedback
Amplifier Design”Princeton, NJ: Van’Nostrand, p.
10, 1945…. Or any modern text on network
analysis.

[2] Power Specialist’s App Note Book

www.intusoft.com/lit/psbook.pdf pg 48,Average
Models For Switching Converter

[3] AUTOMATING DSP DESIGN USING
AUGMENTED SPICE SIMULATION,

www.intusoft.com/DSPTechnicalArticles.htm

[4] SpiceNet help\PDF Files or

www.intusoft.com/lit/GetStarted.pdf

[5] TMS320C28x CPU and Instruction Set

Reference Guide
http://focus.ti.com/lit/ug/spru430e/spru430e.pdf

