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CHAPTER 1 - INTRODUCTION

About IsSpice4

Berkeley SPICE 3A.7 was released in 1984. It was one of the
first attempts by the University of California at Berkeley to
enhance the standard version of SPICE used around the world,
SPICE 2G.6. Since that time, “version 3” has gone through a
number of major revisions. However, it was not until version
3E.2, which was released in early 1992, that there was a viable
replacement for SPICE 2G.6. This is due to the fact that 3E.2
was the first version of Berkeley SPICE 3 to contain virtually all
of the capabilities of SPICE 2G.6. IsSpice3 was the first SPICE
program to be based on SPICE 3E.2 when it was released in
1992. Some SPICE vendors have chosen to upgrade their
SPICE 2G.6 versions by adding pieces of SPICE 3. Intusoft has
chosen to provide a simple and powerful one-step upgrade to
the new standard in simulation.

With IsSpice4, Intusoft has added a breadth of powerful
interactive features to SPICE 3F5, maintaining IsSpice4’s
leadership of truly interactive performance. It also includes a
number of extensions in XSPICE, a derivative of Berkeley
SPICE originally produced at the Georgia Institute of Technology.

In addition to porting SPICE 3 to the PC, Intusoft has added
enhancements above and beyond the Berkeley version. The
following pages detail some of the differences between Intusoft’s
implementation, IsSpice4, which is currently based on Berkeley
SPICE 3F.5, and previous versions of SPICE.
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SPICE 2/IsSpice4 Differences

IsSpice4 is a derivative of Berkeley SPICE 3F.5. There are a
number of major differences between IsSpice4, past IsSpice
versions, and competitive versions of SPICE. Please take a
moment to read through the following sections about the
program differences, especially the “Error Checking” section.

User Interface
The Windows version of IsSpice4 is a (WIN32s) 32-bit program,
and supportsWindows 98SE/ME, and NT4/2000/XP/Vista.

IsSpice4 is completely interactive. Simulations can be started,
stopped, paused and resumed on demand. New analyses can
be run at any time. Virtually any component or model parameter
can be hand tweaked, individually or in groups, and the circuit
can be instantly resimulated. Voltage, current, and power
dissipation waveforms may be displayed at any time.

IsSpice4 contains direct links to "SpiceNet" design entry and
IntuScope waveform processing systems, allowing simulation
data to be available to the schematic for interactive cross-probing,
or to the post-processor for instant display even during an analysis.

IsSpice4 displays multiple waveforms from the AC, DC,
Transient, Distortion, and Noise analyses, while the simulation
runs. This is in contrast to other SPICE versions that display
only the timestep and the data for one node voltage or branch
current. The number of waveforms that can be displayed is
selectable by the user.

IsSpice4 contains a powerful set of interactive command language
(ICL) commands that it uses to automatically access things like
Print expressions, device parameter variation, simulation
breakpoints and control, plus special waveform processing
functions. Optionally, the user can write their own “Simulation
Scripts," or modify existing ones, to perform special interaction
with the simulator and waveform viewer.
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Netlist Construction automatically contains these features:

Several display functions located on the Options Menu of SpiceNet,
and its toolbar of icons, allow the quick toggle on/off capability for
things like pin numbers, part labels, node numbers and labels,
operating point values, waveforms and custom artwork.

The "Find" function, located on the Edit Menu of SpiceNet, allows
you to find and highlight any part and/or node in your drawing.

A Yes/No option is contained in the Test Point Part Properties
Dialog to automatically generate .PRINT statements  for distortion
analysis.

The Place Subdrawing dialog sorts folders and directories
alphanumerically.

SpiceNet allows the simulation of read-only drawing (.DWG)
files.

The MakeDB utility automatically opens a log file if an error has
occured during the parts database compilation process.

The Update Cache function recognizes all model library file
changes, including mechanical properties information.

Cross-probing from schematic to waveform viewer is automated.

Model names and reference designations can use any number of
characters. IsSpice4 input netlists may be in upper or lower case,
or a mixture of both. Note: entries such as R1 and r1 are
equivalent.

IsSpice4 accepts names in place of node numbers from a netlist.

Negative capacitor and inductor values may be used.

Commas are not always used as delimiters. When a comma
appears within a set of parentheses, it will be interpreted as a
comma. Commas that are not enclosed in parentheses will be
treated as spaces.
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IsSpice4 automatically converts SPICE 2 dependent source (E,
F, G, H) polynomial syntax to the (B) nonlinear dependent source
syntax, allowing backward compatibility with any model library
using dependent sources.

Support is provided for parameter passing including .PARAM
statements, multiple level passing, and expressions in the main
circuit.

Error Checking
Errors are placed in the Errors and Status window, and in a file
with the same name as the input netlist and the extension .ERR.
For example, if the input is Sample.Cir, the error file will be
Sample.Err. Some errors may also be repeated in the IsSpice4
output file. If the simulation aborts or the data looks drastically
incorrect, you should check the filename.ERR file for a summary
listing of errors. This is in contrast to SPICE 2, which places the
errors in the output file.

New EKV Model
Addition of the EPLF-EKV 2.6 MOSFET model , a  scalable and
compact  MOSFET model ideal for use in the design and
simulation of low-voltage, low-current analog, and mixed analog-
digital circuits using submicron CMOS technologies.

Latest BSIM 4 Model
This model addresses many issues in modeling sub-0.13
micron CMOS technology and RF high-speed CMOS circuit
simulation. BSIM4.0.0 has the following major improvements
and additions over BSIM3v3:

•  An accurate new model of the intrinsic input resistance for
both RF, high-frequency analog and high-speed
digital application.

• Flexible substrate resistance network for RF modeling.
• A new accurate channel thermal noise model and a noise

partition model for the induced gate noise.
• A non-quasi-static (NQS) model that is consistent with the

Rg-based RF model and a consistent AC model that ac
counts for the NQS effect in both transconductances and
capacitances.
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• An accurate gate direct tunneling model.
• A comprehensive and versatile geometry-dependent

parasitics model for various source/drain connections and
multi-finger devices.

• Improved model for steep vertical retrograde doping profiles.
• Better model for pocket-implanted devices in Vth, bulk

charge effect model, and Rout.

Powerful Models Written in C
Code models are a unique type of SPICE model, created using
a publicly available AHDL (Analog Hardware Description Language)
based on the C programming language. The code describing the
model’s behavior is linked to the simulator via an external DLL file
rather than being bound within the executable program. This
allows new primitive models to be added to the simulator, and old
models changed, without having to recompile IsSpice4. You can
add your own code models to IsSpice4 using the Intusoft Code
Modeling Kit. The modeling kit produces a DLL that can be read
by any IsSpice4 program. Dozens of analog, digital, and mixed
analog/digital code models are included in IsSpice4.

Unique and Improved SPICE Elements
A variety of new analog behavioral capabilities are included in
IsSpice4. The nonlinear dependent source element (B) allows
you to access in-line equations using algebraic, trigonometric
or transcendental operators, node voltages and currents. If-
Then-Else functions and Boolean logic expressions, useful for
mixed-mode simulation, can also be entered directly.

A variety of new models are included in the IsSpice4 program:

• Lossy transmission line model using a distributed approach
(RC, RG, LC, and RLC combinations)

• Uniformly distributed RC/RD transmission line model

• Additional GaAs Mesfet models based on Statz, Curtis-
Ettenburg and others

• Mosfet models (BSIM4.3.0, 3v3.2, Level 6-8, FD SOI)
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• Smooth transition switch

• Voltage and current-controlled switches with hysteresis

• Semiconductor resistor and capacitor .MODEL statements

• Improved MOSFET level 2 model (capacitance response)

• New JFET model (several new parameters)

• Improved lossless transmission line model (Dynamic
breakpoint table with minimum breakpoint spacing control)

New and Improved Analysis Capabilities*

IsSpice4 includes a 12-state digital logic simulator, which
provides Native Mixed-Mode simulation capability. Event-driven
simulation algorithms are also provided for real data, which
allows sampled data filters to be simulated.

A VSECTOL option has been added for accurate simulation of
fast pulses.  DCCONV and TRANCONV options have been
added to help hard to converge circuits in dc and transient
analysis.

An ICSTEP option has been added for high-gain feedback
design, and for the modeling and simulation of complex ICs

The ACCT flag, used to produce  a summary listing of accounting
and simulation related information, now also results in a listing
of parts statistics for the circuit.

You can request that IsSpice4 stop a simulation when a voltage,
current, or a computed device parameter meets a particular
condition. Simulation Breakpoints can be used to test for a
variety of conditions including device breakdown, safe operating
area, and time-dependent events, all while the simulation is
running.
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Tolerances are allowed in parameter passing.

Pole-Zero transfer function analysis is supported by IsSpice4.

RSS, EVA, Worst Case and Sensitivity (Sensitivity in time, AC
and DC domains) analyses are available.

The individual operating temperature of a single device can be set
to a different value than the overall circuit temperature. This allows
simulation of a “hot” component. Temperature and component
parametric sweeps can be run for virtually any parameter.

The DC and transient convergence properties of IsSpice4 have
been greatly improved through the addition or enhancement of:

• Gmin stepping/Source Stepping algorithms
• Independent Supply Ramping algorithms*
• Improved program defaults, LIMPTS/ITL5 no longer needed
• Alternate UIC algorithm
• Automatic conductance from every node to ground

Enhanced Program Output Features

•  Real-time viewing and printing of a wide variety of computed
device parameters, such as device power dissipation, inductor
flux, BJT Vbe, and FET transconductance. (For BOTH the
operating point AND the Transient analysis, see Appendix B in the
on-line help for a full summary listing)

• Access to ALL node voltages, power dissipation of any
component, and the current through any component, without the
need for extra voltage sources.

• Expressions using voltages, currents, computed device
parameters and a variety of mathematical functions viewed on-
screen immediately after an IsSpice4 run, or saved to the output
file for viewing in IntuScope.
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• Computed device parameters, voltages, currents and
expressions available for devices that are within subcircuits.

• Powerful “Show” and “Showmod” functions with summary
printouts of device and model operating point information.

Additions over Berkeley SPICE 3F.5
In addition to the enhancements over the Berkeley SPICE 2G.6
version, Intusoft has added a number of major features to
IsSpice4 that are not found in Berkeley SPICE 3F.5.

A graphical interface that allows the user to easily interact with
the simulator, including pop-up help menus to support all of the
SPICE 3, Nutmeg, and ICL commands.

IsSpice4 features “Real-Time View Windows” that display voltage,
current and computed device parameters from the AC, DC,
Transient, Distortion, and Noise analyses, and as the simulation
runs. A new control statement, “.VIEW,” has been added to
provide control of the waveform scaling.

XSPICE enhancements include:  Full native mixed-mode simulation,
support for user-defined C-subroutines (Code Models), AHDL
language based on C, and over 40 new code-model primitives.

The Nutmeg and SPICE3 interactive control commands (Alias,
Alter, Let, Save, Set, Show, Showmod, Stop, and Control Loop)
are vastly augmented.

The SPICE 3 B element (arbitrary dependent source) supports
Boolean logic expressions, and an If-Then-Else statement. This
is useful for a variety of functions, including table-type
representations.

A new JFET and HEMT model (Parker model) based on the work
of Macquarie University in Australia has been added.

A model current convergence test has been added to IsSpice4.
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The Lossy Transmission Line has frequency dependence (skin
effect/dielectric loss) in the time and frequency domains.

R, L, C, B, and O expressions can use frequency, time and
temperature.

B elements accept expressions that are functions of device
currents in the time and frequency domains.

Element Syntax Changes
Temperature coefficients are no longer included on the resistor
call line. Resistor temperature coefficients are now inserted in
a resistor .MODEL statement.

The MOSFET parameter XQC is ignored since an improved
Meyer capacitance model is used all of the time.

Control Statement Syntax Changes
The .NOISE and .DISTO statements have new syntax
requirements. SPICE 2 .NOISE and .DISTO syntax is not
compatible. See the .NOISE and .DISTO syntax in Chapter 10
for more information.

The .TEMP statement is not recognized. To change the circuit
temperature, use the .OPTIONS TEMP= parameter or the set
temp = ICL command. Multiple runs at several temperatures
are fully supported. In addition, a different temperature can be
set on each individual device during a single simulation.

Several .OPTIONS parameters have been added to support
the “Real-Time View Windows” and the Boolean logic
expressions in the analog behavioral element B. See the
.OPTIONS statement for more information.

Several .OPTIONS parameters have been added to support the
native mixed-mode simulation features.
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Obsolete SPICE 2 Functions
Polynomial capacitors/inductors (using the POLY keyword) are
not supported, although polynomial elements can be created
using behavioral expressions, subcircuits, the new B element or
code models.

Several unnecessary .OPTIONS parameters (ITL5, LIMPTS,
etc.) have also been removed.

Several separate input circuit netlists may not be included in the
same input file and simulated batch style.
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Using ISSPICE4

IsSpice4 Overview

IsSpice4 is a significantly enhanced version of SPICE, unlike
any analog/ mixed-signal simulator you have run before. This
chapter will describe the operation of IsSpice4 and its features.
A tutorial on IsSpice4 can be found in the Getting Started manual.

Starting IsSpice4

To run IsSpice4

• Select the Simulate function from the ACTIONS menu in
the schematic, text editor, or IntuScope windows.

If IsSpice4 is running, the ACTIONS Simulate function will
simply transfer you to IsSpice4.

If you are running a simulation using only a netlist, then select ‘Use
Text Netlist’ from the ICAP_4 Start menu.  A dialog will come up
asking the directory of your .CIR file.  Once selected, you can
launch a simulation by clicking the Launch Spice icon in the ICAPS
Program Selector dialog. It will always close the current IsSpice4
simulation and rerun a simulation from the beginning.
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Initially, IsSpice4 will load the SPICE netlist and run the
simulations that are designated in the netlist, just like previous
versions of IsSpice. Once the initial simulation is complete, the
Simulation Control dialog will be displayed, and you will be able
to interact with the simulation.

Quitting IsSpice4

To Quit IsSpice4

•  Select Quit from the FILE menu.

Quitting IsSpice4 will result in the creation of a standard SPICE
output file.

The IsSpice4 Display

The IsSpice4 display presents several different windows: a Real-
Time display, a Simulation Control dialog, and Error and
Output Windows. The Simulation Control window has several
buttons that can activate other windows. They are described later
in this chapter.

The Real-Time display shows the circuit performance as the
simulation runs. At the top of the display is a status line that begins
with a status character that alternates between a + and a - sign. This
“pulse” let’s you know that the simulation is proceeding normally.

Real Time
Waveform Display

Script Window

Simulation Control
Dialog

Error/Output
Windows
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Waveform Display
The order of waveform display is AC, DC, Transient, Distortion,
and then Noise. If more than one analysis is run, data from the
AC analysis will be displayed first, then the DC, and so on.
IsSpice4 will try to display all of the waveforms listed in the
.PRINT and .VIEW and ICL view statements. Print Expressions
made with the ICL alias function will be displayed after each
analysis is complete. The screen will be filled with waveforms
as the simulation progresses, until no more room is available.
IsSpice4 will run all of the analyses requested in the netlist,
even if the screen is filled with waveforms. Any waveforms not
displayed can still be viewed by scrolling the display window.

On the PC, the initial number of waveforms displayed depends
on the graphics resolution. The higher the resolution, the more
waveforms you can display.

Note: Waveforms will not appear unless an AC, DC, Transient,
Distortion, or Noise analysis is run. Also, if the .TRAN TSTART
parameter (delayed data taking time) is specified, waveforms
will not appear until after the TSTART time (when data is being
recorded). Until that time, a status bar will display the progress
of the simulation.

Stopping a Simulation: If you wish to stop the simulation you
may press the Esc key. The simulation will halt at the current
timepoint and save all the data up until that point.

Note, Error Messages: If the simulation status character
blinks with a “?” sign, an error has been encountered in the
simulation. IsSpice4 places error messages in the Error window,
and in a separate file, in order to make them easier to view. This
is different than SPICE 2 programs, which place error messages
at various points in the output file. When an error occurs, you
should look in the error file, called Filename.ERR, for the error
message. Filename is the name of the file that you are simulating.
Next to the status character is a status field that indicates what
analysis is currently being performed. Error messages will be
placed under the analysis banner for which they occurred.
The Errors and Status window provides simulation information.

ICAP/4Rx does
not support
some of the
interactive
IsSpice4
features. The
Simulation
Control dialog
will appear
different in
ICAP/4Rx.



14

THE ISSPICE4 DISPLAY

The Output window functions in a manner similar to the traditional
SPICE output file. Data produced by statements (.PRINT analysis)
in the netlist will be stored in the output file when IsSpice4 is
closed. Data produced by statements that are entered into the
Simulation Control dialog’s script window will be displayed in the
Output window.

Simulation Control Dialog

The Simulation Control dialog is used to control the simulation
flow, provide access to past simulation data, and provide
access to the interactive stimulus features. The Simulation
Control dialog is displayed only after the initial simulation is
completed or aborted.

Mode section: The currently active analysis type (last analysis
run) is always checked. You can change the active analysis
simply by clicking on the desired button. The waveforms for the
analysis, if any exist, will be recalled. (The Noise, Disto, and
Sens modes are not available in ICAP/4Rx.)

Plots pop-up and Accumulate Plots: The Plots pop-up dialog
contains pointers to the available sets of waveform vectors.
Waveform vector sets are saved for each of the initial analyses
performed. The Accumulate Plots option will determine if a new
vector set is created for each succeeding analysis run.

Stimulus Button (Not available in ICAP/4Rx): Invokes the
Stimulus Picker dialog, allowing you to select a single part value
or model parameter to sweep as stimulus (change) to a design.

Expression Button (Not available in ICAP/4Rx): Invokes the
Stimulus Picker dialog, allowing you to select a group of parts
or model parameters to sweep.

Measure Button (Not available in ICAP/4Rx): Invokes the
Select Measurement Parameters dialog, allowing you to select
a portion of the circuit to monitor during parametric changes.

Warnings and
Errors are
displayed in the
Errors Window
and stored in
the .ERR file.

ICAP/4Rx does
not support
some of the
interactive
IsSpice4
features (as
indicated). The
Simulation
Control dialog
in ICAP/4Rx
will be
different.
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ICL Script Window

Command Button (Not available in ICAP/4Rx): Invokes a
separate script window, allowing you to run a simulation script.
If desired, this is useful for entering ICL commands when the
normal script window is being used.

Persistence (Not available in ICAP/4Rx): The number of
waveforms displayed in each graph when a parameter(s) is
swept.

Script Atoms: A pulldown menu containing all the available
Interactive Command Language (ICL) functions.

ICL Script Window: A text window in which any number of ICL
functions can be entered and interactively executed.

Control Buttons (Not available in ICAP/4Rx): The Start,
Stop, Pause, Resume, and Abort buttons control the simulation
flow.

Saving Windows Positions

Each of the main IsSpice4 windows can be positioned and re-
sized. Once you have found a comfortable arrangement for your
screen size and resolution, you should save the setup by

Use Save
Preferences to
save the
window
positions.

Text can be
entered and
edited in the ICL
Script window.
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SAVING WINDOWS POSITIONS

selecting the Save Preferences function under the IsSpice4 Edit
menu. On the PC, the Auto Size Windows function under the
Windows menu will automatically cause the Waveform, Error and
Output windows to fill the IsSpice4 window.

Starting, Stopping and Pausing The Simulation

The Start, Pause, Resume, and Abort buttons are used to control
the IsSpice4 simulation. One or more of these buttons may be
gray at a particular time if its function cannot be performed. The
Start button clears the Real-Time display and immediately runs
the last performed analysis. It does not reload the starting netlist.
Abort stops the current simulation and halts all future simulations
if any are scheduled.

Note: The Pause button does not need to be pressed in order to
interact with the simulator.

Scaling, Adding and Deleting Waveforms

Before, during or after a simulation, you can alter the Real-Time
waveform display by re-scaling, adding, or deleting waveforms.
The scales will provide a thumbnail sketch of waveforms, indicating
the min. and max. values on the Y axis. Thumbnail sketches save
a lot of memory and overhead, as opposed to plotting waveforms
in the IntuScope waveform viewer, as is done after simulations.

Any saved waveform (described in the next section on Saving
Vectors) can be displayed. Initially, vectors from the .PRINT and
.VIEW statements will be displayed. Note: only waveforms from
the active analysis can be scaled, added, or deleted. For
example, if transient is the active analysis, you will only be able
to rescale, add, or delete waveform vectors that are saved for the
transient analysis.

To rescale all waveforms

• Press <Ctrl>+T on the keyboard. This works at any time for
the current analysis.

Note: Not
available in
ICAP/4Rx
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Double-click on a waveform to
bring up the Waveform

Scaling dialog

Press Control T
or select Auto
Scale
Waveforms
from the
OPTIONS
menu in order
to rescale all of
the Real Time
waveforms.

To rescale a waveform at any time

• Double-click on the waveform. The Waveform Scaling dialog
will be displayed. Click the Auto button to autoscale the
waveform or enter the desired scaling.

To delete a waveform

• Double-click on the waveform at any time. Click the Delete
button. Select OK. The waveform will be removed the next
time the analysis is run.

To add a waveform

• Double-click on an empty area of the display. Enter the
vector name into the Node: field. Adjust the scaling. Select
OK.

Waveforms specified in the .PRINT statement are displayed
using a default scaling set via the .OPTIONS parameters
Vscale, Iscale, and Logscale. Waveforms with a .VIEW or ICL
view statement will use the scaling values specified on the view
line.
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Saving Waveform Vectors For Real-Time Viewing

IsSpice4 allows all voltages, currents through components, and
computed device parameters to be viewed as waveforms in real-
time as long as they have been saved. Normally, this is done
as a quick selection in ICAP/4’s Simulation Setup dialog
(from the Actions pulldown or SpiceNet’s toolbar). The ICL
command “*#save all allcur allpow” is issued in order for all the
voltages, currents, and power dissipations to be available.
Otherwise, only the vectors listed in the .PRINT/.VIEW statements,
or ICL save/view/alias statements will be available. Print Expressions
that are made with the alias function are also saved, and will be
displayed immediately after the simulation is complete.

As an alternative to the usual way of saving design voltages

• Enter the following statement into the IsSpice4 netlist:

*#save all

The save allcur and allpow keywords can be used to save all
device currents and power dissipations. You can also activate
the save function by using the Simulation Setup dialog found in
the schematic. However, this can take up a great deal of
memory for large circuits. The device and model parameters
listed in Appendix B (in the on-line help) can only be saved for
viewing with the ICL save function. The desired parameters
must be specifically listed, for example:

*#save q1[vbe]  m2[gm]

Interactive Circuit Measurements (Not Available in ICAP/4Rx)

The operating point of the circuit can greatly affect the simulation
results, especially for the AC analysis. With this in mind, the
Measurements dialog can be used to examine the numerical
values of different circuit parameters, without schematic
intervention. The values for the node voltages and branch
currents can be displayed for the operating point of the circuit, or

SAVING VECTORS FOR REAL TIME VIEWING

Important
Note:
The SpiceNet
schematic entry
program
automatically
saves all of the
top-level circuit
node voltages,
and key device
currents and
power
dissipations.
Issuing the
*#save all allcur
allpow
statement is
NOT normally
necessary!!
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Measurements dialog

The Copy
button places
the contents of
the
Measurements
dialog in the
Clipboard.

while an analysis is running. For device and model parameters,
the operating point values will initially be displayed. They can
then be updated at any time by clicking the Refresh button. Note:
the real-time waveforms for the selected quantities do not have
to be displayed in order for the values to be seen.

To choose a parameter(s) to measure

• Click the Measure button in the Simulation Control dialog.
The Select Measurement Parameters dialog will be
displayed.

• Click on the desired topic (main nodes, subcircuit nodes,
current branches, or device reference designations). The
available list of parameters will be displayed.

• Double-click on the desired parameter(s). When you have
chosen all of the parameters that you want, click the Make
button.

• Click the Refresh button to see the current values. The next
time an analysis is run, the selected values will be updated.
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SAVING AND VIEWING PAST SIMULATION DATA

Saving and Viewing Past Simulation Data

A plot name will be given to each analysis during the initial
simulation. Some analyses, such as noise and distortion,
produce multiple plots. A plot refers to the set of waveform
vectors saved with each analysis. The names are listed under
the Plots pop-up menu in the Simulation Control dialog. Future
analyses will replace the vector set that was most recently
simulated unless the “Accumulate Plots” option is checked. For
example, if AC and transient analyses are initially run, then the
ac2 and tran2 plot vectors will be available. If another transient
analysis is run, its data will replace the original tran2 data. If the
Accumulate Plots option is checked, a new plot name, tran3, will
be created to point to the new transient vector set.

To save the vectors associated with a single analysis

• Check the Accumulate Plots option. As subsequent
simulations are run, each set of vectors will be given a new
plot name.

To review the data from a past analysis

• Pull down the Plots pop-up and select the desired vector set.

Once a vector is saved, it can be recalled as if it were just
simulated. This includes the ability to cross-probe vectors from
your schematic entry program and view them in IntuScope.
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Note, Memory Usage: After the initial simulation is performed,
little or no additional memory will be used unless the Accumulate
Plots option is checked. Using the save all allcur allpow option
along with the Accumulate Plots option, can cause large amounts
of memory to be used.

Sweeping Circuit Parameters (Not Available in ICAP/4Rx)

The interactive stimulus feature of IsSpice4 allows virtually any
circuit parameter to be changed at any time, and a simulation
to be immediately rerun.

To select a device/model parameter for sweeping

• Click the Stimulus button in the Simulation Control dialog.
The Stimulus Picker dialog will be displayed.

• Click on the desired reference designation or model name
on the left. The available list of parameters to change will
be displayed on the right.

• Double-click on the desired parameter or click on the
parameter and click OK.

The Interactive Stimulus dialog will be displayed. Note: The find
field can be used to find a particular entry in lieu of scrolling.

The interactive
stimulus feature
can be
accessed any
time, even
when a
simulation is
running.

Stimulus
Picker
dialog
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SWEEPING CIRCUIT PARAMETERS

The current value of the parameter will be displayed in the
Interactive Stimulus dialog.

To set a new parameter value

• Either type the desired value or use the arrows.

The arrows at the center will change the value slightly while the
arrows on the ends will change the value greatly. The left arrow
moves the value down while the right arrows move the value up.
Each arrow changes the value by a difference of one order of
magnitude, thus providing a total control range of 5 orders of
magnitude up or down.

To change the range of magnitudes that the arrows control

• Click on the center dot. You can then move the dotted box
to a new set of magnitudes.

• Click the dot to go back to the Interactive Stimulus function.

Interactive
Stimulus

dialog

An asterisk in
the Set button
indicates that
the circuit has
not been
simulated with
the displayed
value.
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To run an analysis with the new parameter value

• Click the Set button.

When the parameter value is changed, the Set button will have
an asterisk, which indicates that a simulation with this new value
has not yet been run. Clicking the Set button runs the last
analysis with the new value.

To hand-tweak a parameter value

• Check the Always button. Change the parameter value by
holding down one of the Stimulus dialog arrows.

If the Always button is checked, the analysis will be run as soon
as the value is changed. If the mouse button is held down, the
parameter will be changed and a new analysis will run as soon as
the old analysis is completed. In this way, it is possible to control
a circuit variable and watch the waveforms change. However, is
simulation run times are longer than several seconds, the changes
in waveforms and selected measurement values will be delayed.

Sweeping Groups of Parameters (Not Available in ICAP/4Rx)

The Expression dialog works in a manner that is similar to the
Interactive Stimulus dialog. However, several circuit variables
may be swept in tandem.

To select a group of device/model parameters for sweeping

• Click on the Expression button in the Simulation Control
dialog. The Select Expression Parameters dialog will be
displayed.

• Click on the desired reference designation or model name
on the left. The available list of parameters to change will
be displayed at the bottom of the dialog.

• Double-click on the desired parameter(s). Then click the
Make button.

You may have
as many
Stimulus
dialogs open as
you like.
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SWEEPING GROUPS OF PARAMETERS

Interactive
Expression

dialog

The Interactive Expression dialog will be displayed. Note: You
may choose any combination of parameters.

The Make button will construct the Interactive Expression dialog
with each circuit parameter multiplied by a control vector, for
example, CtrlVec1. When the CtrlVec1 value is changed, all of
the circuit parameters will be changed based on this value using
the ICL Alter function.

To set a new CtrlVec value

• Either type the desired value or use the arrows.

The arrows will behave in a manner similar to those in the
Interactive Stimulus dialog.

To run an analysis with the new CtrlVec value

• Click the Set button.

When the CtrlVec value is changed, the Set button will have an
asterisk in it, indicating that a simulation with this new value has
not yet been run. Clicking the Set button runs the last analysis
with all of the Alter variables set to the new value.



25

Chapter 2 - Using ISSPICE4

In other words, the Interactive Expression dialog will run all of the Alter
statements, like a simulation script, BEFORE running the analysis.

To hand-tweak all of the parameters

• Check the Always button. Change the CtrlVec value by
holding down one of the Expression dialog arrows.

The Always button option works in a manner similar to the one
in the Interactive Stimulus dialog.

Note: The latest value assigned to a component parameter
will remain that value, even once all the aforementioned
dialog boxes are closed.  Only re-running a simulation from
the schematic, in the usual way, will revert components back
to their true original value.

In addition to the ability to sweep a group of parameters, the
circuit parameters may be independent or functions of other
circuit variables. For example, in the Expression dialog shown
below, the first resistance parameter is a function of an equation,
while the second is a function of the first resistance value. The
capacitor value is a function of the CtrlVec1 squared.

Virtually any combination of circuit variables can be swept in this
manner, giving you the ability to thoroughly explore your design.

Adding An ICL Script To A Sweep

Apart from the usual easy way of sweeping component values
and temperature in SpiceNet using the Alter icon, an ICL
command can be placed in the Interactive Expression dialog.
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This gives you the ability to run multiple analyses, alter multiple
sets of parameters, and easily build curve families. For example,
by adding the Sendscript update command, the already plotted
vectors will be updated in IntuScope each time the CtrlVec1 is
changed, automatically building a curve family.

Important Note: For this to work IntuScope must already be
opened, and you need to plot at least one vector you are
interested in. Also the contents of the Interactive Expression
dialog will run BEFORE the analysis, the sendscript update will
be for waveforms from the PREVIOUS analysis.

Scripting: Introduction to ICL

The DoScript button in the Simulation Control dialog is used to
run the Interactive Command Language functions that have been
typed into the Simulation Control dialog’s Script window. ICL
functions can also be entered in the IsSpice and IntuScope
Command windows, Expressions window, or the input netlist’s
control block. The Script Atoms pop-up contains all of the
available ICL functions, which include most of the traditional
SPICE analysis functions.

Some of the tasks you can perform include:

• Interactively run different analyses
• Put static reference data points on a graph (points)
• Set Simulation Breakpoints (stop)

ADDING AN ICL SCRIPT TO A SWEEP

See the ICL
chapter in this
manual for
more
information.

Any ICL
command can
be entered into
the Expression
dialog.

Sendscript
update in
IsSpice4 sends
the update
command to
IntuScope
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Script Atoms
pop-up
dialog

• Display detailed operating point information (show/showmod)
• Set up simulation loops to create curve families

To obtain help on an ICL function
• Select the Script Atoms pop-up and select the desired

function.

When a function is selected, a help dialog will be displayed. All
of the information in the fields of the dialog can be copied to the
Edit: field at the bottom. The OK button causes the Edit: field
contents to be copied to the script window at the cursor position.

To run a simulation script

• Click the DoScript button. The contents of the script window
will be executed.

Help dialog
for the Show

function

Scripts may be
run individually
or in groups.
They can also
be saved to a
text file for later
use.

The text in the
Script, Output,
and Help
windows can be
edited (cut,
copy, paste)
using the
keyboard
control keys
(^x, ^c, ^v).

Script
Window

repeat 1
tran 1n
alter @r
stop whe
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SCRIPTING: INTRODUCTION TO ICL

Viewing Waveforms In More Detail

There are two methods to place these real-time waveforms
inside IntuScope. The first method allows you to control
IntuScope from within the IsSpice4 environment by sending
ICL scripts to IntuScope using the sendscript command. This
enables you to modify real-time display waveforms as desired,
then send them over to IntuScope for further study without
leaving IsSpice4. Note: IntuScope must be open for the scripts
to run.

To plot a real-time waveform in IntuScope with IsSpice4

• Click in the ICL Script window to activate it and type
“sendscript plot” name, where name is the name of the
vector you want to send.

• Click the DoScript button.

The second of the two above methods links IntuScope directly
to the “Active IsSpice Simulation,” after the run is complete. This
essentially connects the IsSpice4 Simulation Control and
IntuScope Add Waveform Dialog together. You can see at a
glance that this link is active if you can click on the “All Test Pts”
button at the bottom left of IntuScope’s Add Waveform Dialog.
This button allows you to plot all test points’  real-time waveforms
with one click. Also, the Add Waveform Dialog makes it easy to
plot any waveform simply by selecting it from a list. Note:
IntuScope only has access to all of your saved real-time circuit
vectors if IsSpice4 is still running.

The sendscript
syntax is
covered in
detail in the ICL
chapter 11.
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Analysis Summary

Listed below are the various types of analyses that IsSpice4 can
perform. They are listed under the general type of analysis to
which they apply. Each line contains the IsSpice4 keyword,
shown on the left, and a brief explanation. Note that all control
statements in the main netlist begin with a dot, while control
statements in the ICL block or in the Simulation Control script
window do not.

DC Analyses
DC...DC Analysis - DC sweep of an independent voltage or current source
OP...DC Operating Point - Small-signal bias solution
TF...Transfer Function - DC transfer function with input/output impedances
SENS...Sensitivity Analysis - DC small-signal sensitivity

AC (Small-Signal) Analyses
AC...AC Analysis - Frequency response/Bode plot
NOISE...Noise Analysis - Output, equivalent input, and component noise
DISTO...Distortion Analysis - Harmonic/Intermodulation distortion
PZ...Pole Zero - Pole/Zero transfer functions
SENS...Sensitivity Analysis - AC small-signal sensitivity*

Transient Analyses
TRAN...Transient Analysis - Nonlinear time domain response
FOUR....Fourier Analysis - Harmonic analysis with THD

Temperature Analyses
OPTIONS TEMP...Circuit and element temperature variations

ICL - Interactive Command Language
User-defined command scripts that drive IsSpice4. The ICL includes over 60
different commands and functions

Simulation Templates - ICL Command Scripts
*Sensitivity (Time, AC, DC) , RSS, EVA (Extreme Value), and Worst Case,
running for the Transient, AC, DC, and Operating point analyses

ICAP/4Rx Note: The .FOUR, .NOISE, .DISTO, .TF, .SENS,
Monte Carlo, Optimization, and Failure analyses and Simulation
Templates are NOT available in ICAP/4Rx.
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Code Models And Analysis Types

There are 2 basic types of code models that are supplied with
IsSpice4; analog and event-driven. A code model may be
classified by looking at its input and output nodes, which may be
of the analog or event-driven type. Event-driven node types can
be further subdivided into digital, real, integer, and user-defined.
A hybrid model is one that uses two or more node types. Event-
driven models are simulated by an event-driven algorithm. The
analog and hybrid models that use analog nodes are simulated
by the SPICE 3 algorithm. Both algorithms are included in
IsSpice4.

Analog code models should only be used in the operating point,
DC sweep, AC and transient analyses. Event-driven code
models, including hybrid models, can only be used in operating
point, DC sweep, and transient analyses. There is no provision
for using AC analysis with event-driven code models. Other
analysis types, such as noise or distortion, are not supported at
this time.

ICL - Interactive Command Language

IsSpice4 contains a scripting language that includes functions
for simulation control (such as breakpoints and loops), functions
for output control (such as print, show and alias), and all of the
standard analysis operations.

DC Operating Point Analysis

Produces the operating point of the circuit, including node
voltages and voltage source currents.

The DC analysis portion of IsSpice4 determines the quiescent
DC operating point of the circuit with inductors shorted and
capacitors opened. A DC analysis, known as the “Initial Transient

.OP will cause a
DC operating
point to be
printed.

See Chapter 11
for more
information on
ICL.

Code models
that use the
event-driven
simulator in
IsSpice4
(digital, real),
cannot be used
in an AC
analysis.
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Solution”, is automatically performed prior to a transient analysis
to determine the transient initial conditions. A DC analysis,
known as the “Small Signal Bias Solution”, is performed prior to
an AC small-signal analysis to determine the linearized, small-
signal models for all nonlinear devices. It should be noted that
these two operating point calculations may be different, depending
on the DC and transient stimulus used.

DC Small Signal Transfer Function (Not Available in ICAP/4Rx)

The .TF function produces the DC value of the transfer function
between any output node and any input source, along with the
input resistance looking into the circuit at the source, and the
output resistance looking into the output node.

This analysis computes the small signal ratio of the output node
to the input source and the input and output impedances. Any
nonlinear models, such as diodes or transistors, are first linearized
based on the DC bias point, and then the small signal DC analysis
is carried out.

DC Sweep Analysis

Produces a series of DC operating points by sweeping one
independent source, or two sources in a nested loop.

The .DC function is a special subset of the DC analysis feature.
It is used to perform a series of DC operating points by sweeping
voltage and/or current sources and performing a DC operating
point at each step value of the source(s). At each step, the DC
voltages, currents, and computed device/model parameters can
be recorded. The .DC line defines which sources will be swept,
and in what increments. One or two sources can be involved in
the DC sweep. If two are involved, the first source will be swept
over its range for each value of the second source. This option
is useful for obtaining semiconductor device output characteristics
or calculating load lines.

Use the ICL
Show
commands to
get additional
operating point
information.

The .TF
statement
controls the
transfer function
analysis.

See the .DC
syntax in
Chapter 10 for
more
information.

See the .PRINT
statement for
more
information on
getting data out
of the DC
sweep analysis.
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Sensitivity Analysis (Not Available in ICAP/4Rx)

Produces the Operating Point, DC, AC, and Transient sensitivities
of any output variable with respect to all circuit parameters, or,
the sensitivities of any circuit parameter with respect to any
output variable.

There are two sensitivity analysis approaches; traditional SPICE
and Simulation Templates. Sensitivity is useful when trying to
find worst-case circuit operation. By finding the most sensitive
components and moving their values accordingly, the circuit’s
performance can be evaluated. The traditional SPICE form of the
sensitivity analysis uses the direct approach [3-1] to support
sensitivity calculations for the DC and AC analyses. The DC
sensitivity is with respect to the DC operating point. IsSpice4
calculates the difference in an output variable, either a node
voltage or a branch current, by perturbing each parameter of each
device independently. Since the method is a numerical
approximation, the results may demonstrate second-order effects
in highly sensitive components, or may fail to show very low but
nonzero sensitivity. Since each variable is perturbed by a small
fraction of its value, zero-valued parameters are not analyzed.
The output, consisting of the sensitivity of all circuit parameters
(values and model parameters) with respect to a named voltage
or current, is placed in the IsSpice4 output file.

IsSpice4 supports a more powerful sensitivity analysis using
Simulation Templates. AC, DC, Transient, and OP related
sensitivities may be obtained for large parameter perturbations
using this method. In addition, this version is more flexible and
allows more sorting and output options. For example, you can get
the sensitivity of any circuit parameter with respect to any output
measurement (maximum, minimum, or rise time for any voltage,
current, power dissipation waveform, etc.) as well as the opposite;
the sensitivity of any output measurement with respect to any
circuit parameter. RSS, EVA, and Worst Case options are also
available when using Simulation Templates. This is the preferred
method for sensitivity analysis.

See Simulation
Templates in
this chapter for
more info on
sensitivity,
RSS, EVA, and
worst case
analysis.

See Chapter 10
for more info on
sensitivity
analysis.
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AC Analysis

Generates a frequency response/Bode plot of the circuit.
Magnitude, phase, real, or imaginary data is produced.

The AC analysis in IsSpice4 computes the small signal response
of the circuit. Output variables are recorded as a function of
frequency.

Before the AC analysis is performed, IsSpice4 first computes the
DC operating point of the circuit. It then determines the linearized,
small-signal models for all of the nonlinear devices in the circuit,
based on this operating point. The resultant linear circuit is then
analyzed over the specified range of frequencies. Therefore, it is
important to establish the proper DC circuit biasing in order for the
AC analysis to produce useful data. For example, biasing an op-
amp in its linear range will give different AC results than if the op-
amp is saturated.

DC Bias Note: It should be noted that the small-signal bias point
is determined by the DC values on the independent source rather
than the initial transient signal generator values.

The desired output of an AC small-signal analysis is usually a
transfer function (voltage gain, transimpedance, etc). If the
circuit has only one AC input (normal case), then that input is
traditionally set to unity magnitude and zero phase. By doing so,
the output variables have the same value as the transfer
function. For example, if the input is a voltage source with
magnitude 1, then the output node voltages would equal gain:
Gain = Vout/Vin, which equals Vout, with Vin = 1.

Although the AC analysis performs a sinusoidal steady-state
analysis, it should not be confused with a transient (time domain)
analysis using a large signal SINE wave. The AC analysis is a
small-signal analysis where all non-linearities are linearized. For
instance, if the DC biasing of a transistor gain stage produces a
gain of ten, then the gain will remain ten no matter what the input.
If 1 is the input, then 10 is the output.

The .AC
statement
controls the AC
analysis.

See the .PRINT
statement for
more
information on
getting data out
of the AC
analysis.
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If 100 is the input, then 1000 is the output. The gain is linearized.
Under nonlinear conditions, however, the gain of the transistor
will roll off as the input is increased. The “VName 1 0 SIN.....”
stimulus is only used for time-domain analyses, and should not
be confused with the “Vname 1 0 AC 1” AC stimulus.

Frequency Mixing Note: The AC analysis is a single frequency
analysis. Only one frequency is analyzed at a time. Therefore,
circuits performing signal mixing will not benefit from the AC
analysis. In order to see frequency mixing, you will have to run
a transient analysis and convert the output waveforms into the
frequency domain using a Fourier transform.

Noise Analysis (Not Available in ICAP/4Rx)

Produces the output and equivalent input noise over a specified
range of frequencies, as well as the noise generated by active
components and resistors.

The noise analysis computes the integrated noise contributions
for each noise generating element in the circuit over the frequency
range that is specified in the Noise statement. It also calculates
the level of input noise from the specified input source, which is
required to generate the equivalent output noise at the specified
output node.

The calculated value of the noise corresponds to the spectral
density of the circuit variable. After calculating the spectral
densities, the noise analysis integrates these values over the
specified frequency range in order to determine the total noise
voltage or total noise current. The particular output variables are
defined by the Noise analysis statement.

Noise data is stored in the output file in two forms. One is for the
noise spectral density curves, INOISE and ONOISE, and the
other is for the total integrated noise over the specified frequency
range. All noise voltages/currents are in squared units (V2/Hz and
A2/Hz for spectral density, V2 and A2 for integrated noise) to
maintain consistency and prevent confusion.

The .NOISE
statement
controls the
noise analysis.

See the .PRINT
statement for
more
information on
getting data
from the noise
analysis.

See the voltage
source syntax
in Chapter 8 for
information on
AC analysis
stimulus.
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The types of noise contributions are thermal noise from resistors,
whether they are discrete or internal ohmic semiconductor
resistances, and shot and flicker noise from semiconductors.
Each noise source is assumed to be statistically un-correlated
to the other noise sources in the circuit. Each noise source value
is calculated independently. The total noise is the RMS sum of
the individual noise contributions.

Distortion Analysis (Not Available in ICAP/4Rx)

Produces small signal steady-state harmonic and intermodulation
distortion data.

The distortion analysis computes the steady-state harmonic and
intermodulation products for small input signal magnitudes.
Distortion analyses can be performed using linear devices and
the following semiconductors; diode, BJT, JFET, MOSFET and
MESFET. If there are switches present in the circuit, the analysis
will continue to be accurate if the switches do not change state
under the small excitations that are used for distortion calculations.

In the distortion analysis, a multidimensional Volterra series
analysis is solved using a multidimensional Taylor series to
represent the non-linearities at a specific circuit operating point.
Terms up to the third order are used in the series expansions.
One of the advantages of the Volterra series technique is that it
computes distortions at mix frequencies symbolically (i.e. n F1
± m F2). It is possible, therefore, to obtain the strengths of
distortion components accurately even if the separation between
them is very small. The disadvantage is, of course, that if two of
the mix frequencies coincide, the results are not merged together
and presented. However, this could be done as a post-processing
step in the IntuScope program. You will have to keep track of the
mix frequencies and add the distortions at coinciding mix
frequencies together.

Distortion
analysis is
useful for
investigating
small amounts
of distortion
that are
normally
unresolvable in
the transient
analysis.

The .DISTO
statement
controls the
distortion
analysis.
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Pole-Zero Analysis
Produces the poles and/or zeros of a transfer function.

The pole-zero analysis computes the poles and/or zeros of a
small-signal AC transfer function. The program first computes
the DC operating point and, like the AC analysis, determines the
linearized, small-signal models for all of the nonlinear devices in
the circuit. The circuit is then analyzed to find the poles and
zeros. The pole-zero analysis works with resistors, capacitors,
inductors, linear-controlled sources, independent sources, BJTs,
MOSFETs, JFETs, MESFETs, and diodes. Transmission lines
are not supported.

Two types of transfer functions are allowed, VOL and CUR: VOL
represents (output voltage)/(input voltage) and CUR represents
(output voltage)/(input current). These two types of transfer
functions cover all cases. For each transfer function, you can
find the poles, zeros, or both. This feature is provided mainly
because if there is a non-convergence in finding poles or zeros,
then at least the other can be found. The input and output ports
are specified as two pairs of nodes. Thus, there is complete
freedom regarding the output and input ports and the type of
transfer function. The results of the pole-zero analysis may be
found in the output file.

The method used in the analysis is a suboptimal numerical
approach. For large circuits, it may take a long time, or it may fail
to find all of the poles and zeros. For some circuits, particularly
those with active devices and op-amp macro models, the method
may become lost and find an excessive number of poles and zeros.

Transient Analysis
Runs a nonlinear time domain simulation.

The transient analysis computes the circuit response as a
function of time over any time interval. Output data, including
node voltages and voltage source currents, can be recorded
using the .PRINT or .PLOT statements. During a transient

The .PZ
statement
controls the
pole-zero
analysis.
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analysis, any number of independent sources may have active
time-varying stimulus signals.

The transient time interval is specified on a TRAN control line
using the parameters TSTEP, TSTOP, TSTART, and TMAX to
control the data printout step, total analysis time, start of data
recording time, and maximum internal timestep, respectively.

In earlier versions of IsSpice, two techniques were used to
control the simulation timestep:  iteration count and truncation
error (default). In IsSpice4, the iteration count method has been
eliminated.

Transient Initial Conditions

The initial voltages and currents are automatically determined by
a DC operating point analysis called the “Initial Transient Solution.”
This operating point is performed before the transient analysis
begins, and may be different than the small-signal bias solution.
All sources that are not time-dependent (for example, power
supplies) are set to their DC value, while sources that are time-
varying are set to their initial values.

UIC (use initial conditions) is an optional keyword in the .TRAN
statement that causes IsSpice4 to skip the initial transient
solution that is normally performed prior to the transient analysis.
If this keyword is included, IsSpice4 uses the values that have
been specified using “IC =” values on the various elements, and
.IC statements, as the sole source for initial conditions. The
transient analysis will start with these values. The first set of
valid node voltages will be placed in the output file under the
“Initial Transient Solution” banner in order to provide information
on the initial state of the transient analysis.

How IsSpice4 Runs A Transient Analysis

IsSpice4 accurately computes transient events via a variable
timestep control algorithm. During a simulation, the rate at which
the time progresses will vary in order to maintain a specific

The .TRAN
statement
controls the
transient
analysis.

See the .IC
statement in
Chapter 10 for
more
information.
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accuracy. For example, when capacitor voltages and inductor
currents are changing very little, the program will take larger
timesteps. If the timesteps were fixed at the shortest possible
timestep, then the simulation could run hundreds or even
thousands of times longer than necessary. The use of a variable
timestep is one of the major breakthroughs that SPICE has
brought to the world of circuit simulation.

The default timestep selection algorithm uses an estimate of the
Local Truncation Error (LTE) of integration. The LTE is the
estimate of the error between the real answer and the answer that
is produced by the current integration method, either Trapezoidal
or Gear. When the LTE is too large, the timestep is reduced. If
the timestep is reduced below 10-9 times the maximum timestep,
the simulation will be aborted. The error message “Timestep Too
Small” will be reported. The maximum time allowed can be
altered by adjusting the TMAX parameter in the .TRAN control
statement. When the LTE is determined to be too small, the
timestep is allowed to increase up to the maximum time step.
The LTE is overestimated by a factor of 7 for timestep increases,
thereby causing a hysteresis in the timestep control.

TRTOL in the .OPTIONS control statement sets the LTE
overestimate. The default of TRTOL=7 was selected in order to
give the fastest simulation time for a number of test cases.
Changing TRTOL is not recommended.

RELTOL is the .OPTIONS control parameter that sets the LTE.
Note: VNTOL, CHGTOL and ABSTOL will also affect the
selection, however, since only the largest of these error terms is
used for the timestep change, RELTOL is usually the dominant
parameter.

Output Data And Aliasing

In IsSpice4, output is recorded at each TSTEP interval, which is
specified in the .TRAN control statement. This time is not the
same as the computational timestep. The computation can be
proceeding at either shorter or longer intervals than TSTEP. To

The “Timestep
Too Small”
error trap is set
to 10-9 times
TMAX.

RELTOL
controls the
simulation
timestep.
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get the output values, the program uses linear interpolation of the
data to produce a uniformly spaced output for each TSTEP. The
default linear interpolation can be changed to a higher order using
the .OPTIONS INTERPORDER parameter.

The maximum frequency that can be resolved in the simulation
output data is set by the Nyquist criteria at 1/(2*TSTEP). If higher
frequencies are present in the simulation, perhaps due to
oscillation or ringing, they will be viewed incorrectly as lower
frequencies when the data is plotted. The simulation, however,
proceeds at the timesteps that are needed to resolve the higher
frequencies, even if the recorded data will alias the real response.

The maximum timestep can be too long to resolve even transient
driving functions. The transient signal generators in IsSpice4 do
not make contributions to Local Truncation Error, LTE. A sine
wave, for example, could go through a large portion of a cycle or
even several cycles between timesteps. The linear interpolation
algorithm would lead to inaccuracies or even nonsense if this
condition were allowed. To counteract the problems associated
with large timesteps and aliasing, you should use the VSECTOL
option. The argument of VSECTOL lets the largest error in volts-
seconds possible between time steps.

VSECTOL reduces the time step if the product of the absolute
value of the error in predicted voltage and the time step exceeds
the VSECTOL specification. Using VSECTOL to control the time
step produces higher accuracy during the turn-off transition and
uses less computational resources when there is no switching
activity.

Changing The Simulation Accuracy

Increasing RELTOL can dramatically increase simulation speed.
When circuits become very complex, the highest frequency at
any given time will control the timestep. If accuracy related to
that activity is less important, then the overall simulation
accuracy will not be compromised by increasing RELTOL. For a
stable simulation, the steady-state circuit values will not be

TSTEP in the
TRAN
statement must
be small
enough to
resolve the
highest
frequencies.

Use the TMAX
parameter in
the TRAN
statement to
reduce the
maximum time
step.
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CHANGING THE SIMULATION ACCURACY

Increase
RELTOL to .01
to speed the
simulation and
eliminate
“Timestep Too
Small” errors.

changed by increasing RELTOL. Increasing RELTOL to greater
than .03 will usually have adverse effects on simulation stability,
making it impossible to arrive at a steady-state solution. If you
set VSECTOL then you can effectively change the time step
control to VSECTOL, increasing RELTOL to .01 and disable
model bypass by setting BYPASS=0.

For Example:
The figure below illustrates the effect of timestep control on
simulation results. All traces have the same y-scaling and all of
the simulations used trapezoidal integration. The top trace
shows the true results. The second trace illustrates the degradation
in simulation stability, which is caused by increasing RELTOL to
.03. The third trace illustrates the aliasing caused by making the
output resolution too coarse.

Simulation Stability
The transient simulation uses variable timesteps and nonlinear
equations to solve for circuit values. Numerical solution of these
circuit equations introduces potential instability in the
mathematical description. The combination of variable timesteps

Variations in
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and nonlinear circuit equations has no known stability criteria.
Ringing or oscillation can result from the degradation in stability,
which is caused by numerical integration and its associated
errors. Limit cycles have been observed in many simulation
outputs at very small levels. In some cases, the limit cycles may
become significant and it will be up to the designer to distinguish
between numerical artifacts and true circuit behavior.

If the output is sampled at a high enough frequency, then
reduction in RELTOL will produce more accurate results. RELTOL
is small enough when further reductions fail to produce significant
changes in data.

Gear
Integration can
be selected
using the
.OPTIONS
METHOD=GEAR

Changing from the default trapezoidal integration to the Gear
method will frequently improve stability when inductors and
switches such as diodes are present. The figure above illustrates
the increased accuracy that is provided by the Gear integration
method for the same RELTOL. Trapezoidal integration produced
the same results in less time when RELTOL was reduced to
.0001. In larger circuits, the smaller value of RELTOL will
frequently result in “Timestep Too Small” errors.

The next figure uses the same circuit as the figure shown above,
except the damping R-C network has been removed. This is a

Variations in
Trapezoidal and
Gear Integration

and RELTOL
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common configuration in power circuits. The high frequency
ringing will cause small time steps and use excessive
computational time on an unimportant performance parameter.
Increasing RELTOL with the GEAR integration produces errors
in the direction of a more stable numerical solution, while
trapezoidal integration tends to produce a less stable solution.
It is for this reason that GEAR integration with a large RELTOL
provides superior results for power circuitry.

Fourier Analysis (Not Available in ICAP/4Rx)

Produces the magnitude and phase vs. frequency response for
the DC and first 9 harmonics, plus the total harmonic distortion.

The Fourier analysis determines the DC component plus the first
9 AC frequency and phase components. Also, the normalized
frequency and phase are printed along with the total harmonic
distortion. Several output variables may be listed for each Fourier
analysis that is performed.

The total harmonic distortion is the square root of the sum of the
squares of the second through ninth normalized harmonics times
100, and expressed as a percent,

1 2

D1
1N5811

L2
10U

V1

Variations in Trapezoid and
Gear Integration
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Care must be taken when performing a Fourier analysis. Since
IsSpice4 is actually performing a Discrete Fourier Transform,
all of the problems associated with taking a DFT on a non-periodic
waveform are applicable.

A more flexible version of the Fourier analysis is available
through the use of the ICL Fourier function and in the IntuScope
waveform processing program. This version allow for a variable
number of harmonics and complex expressions, as opposed to
being limited to node voltages.

Temperature Analysis

IsSpice4 allows you to vary the temperature of the circuit or a
particular element.

IsSpice4 simulates circuits at a nominal temperature of 27 deg
C (.OPTIONS TEMP=). The temperature at which device model
parameters are calculated is also set to a default of 27 deg C
(.OPTIONS TNOM=). Both of these values can be changed. In
addition, the temperature at which model parameters were
calculated, as well as the simulation temperature for an individual
device, can also be set. This allows IsSpice4 to simulate
temperature gradients, as well as a “hot” device. Global temperature
changes are performed with .OPTIONS parameters, while
individual device temperatures are set directly on the device call
line or in the .model statement.

Temperature dependent support is provided for resistors, diodes,
JFETs, BJTs, and level 1, 2, 3, and 4 MOSFETs. MOSFETs that
use the BSIM models have an alternate temperature dependency
scheme that adjusts all of the model parameters before they are
input to IsSpice4. For details on the BSIM temperature adjustment,
see [3-2,3].

See the
.OPTIONS
TEMP
parameter in
Chapter 10 for
more info on
changing the
circuit
temperature.

See the Getting
Started book
for more info on
temperature
sweeps.

29

2

% *100
1
m

m

R
THD

R−

 
  =     

∑



44

TEMPERATURE ANALYSIS

The equations that describe the temperature dependence of the
various model parameters can be found under the syntax of the
appropriate element.

Simulation Templates (Not Available in ICAP/4Rx)

IsSpice4 allows you to create and run advanced analyses using
a series of ICL commands in a script file, or the usual simulation
control dialog in SpiceNet.

SPICE simulators operate on a netlist and perform a standard set
of simulations; AC, DC, Transient, etc. Normally these analyses
are performed once and then control is passed back to the user.
By adding a script based control language, you can command the
simulator to perform multiple analyses as well as process the
simulation results. This automation can result in huge time
savings and the elimination of many repetitive manual operations.
The ICL script features of IsSpice4 give you this capability.
What’s been missing, until now, is the ability to create new
analysis types.

The analysis types that have been most often requested are
based on transient sensitivities: RSS (Root Summed Square),
EVA (Extreme Value Analysis), and worst case analysis. In
theory, each of these analyses can be performed using scripts;
however, the scripts would have to be specialized for each
circuit. Simulation Templates were invented by Intusoft to
automatically integrate ICL scripts with the netlist building
function in the schematic capture tool, in order to enable a variety
of design verification analyses.

Simulation Templates are ICL scripts that have additional
embedded instructions that tell the schematic netlister function
where to insert design specific information into the ICL script
stream. Template files are text files with a .SCP extension. They
are located in the Script folder under SPICE8 (by default).

ICL Scripts are
set up using
ICAP/4
Simulation
Control Dialog’s
Measurement
Wizard (in the
Measurements
tab).
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See Chapter 11
for more
information on
ICL scripts.

As shown in the figure, the
schematic netlist builder
combines the circuit
description (standard
SPICE syntax) with user-
defined measurements. The
user-defined measurements
perform automated
waveform analysis
(previously done manually
in the IntuScope post
processing tool). The
measurements are
specified in the ICAPS
Simulation Control dialog’s
Measurements tab. When a
Simulation Template based
analysis is requested, the
schematic reads the
template .SCP file and uses
the embedded instructions
to construct an ICL script
specific for the design. The

resulting IsSpice4 netlist, which contains the circuit description
and complete ICL script, is then sent to IsSpice4. The results of
the simulation are placed in the output file. They can be viewed
with IsEd, or the Results dialog within the ICAPS Simulation
Control dialog.

Simulation Templates can be easily edited to create custom
report formats and even to modify the analysis based on your
special needs. Extensions to optimization, what-if and sneak
circuit analysis are possible. Templates that perform Worst
Case, RSS, EVA, and Sensitivity measurements using OP, AC,
DC and Transient analysis are included with IsSpice4.

Expanding these traditional analyses using Simulation Templates
requires single valued measurements (i.e. rise time, maximum
value, average value, etc.) to be available for the perturbation
(sensitivity) analyses that are performed. The user-defined



46

SIMULATION TEMPLATES

measurement capability is used to make these easily applicable
to analyses that produce vector data, such as a transient
analysis. For example, we can speak of the sensitivity of the
output’s rise time with respect to the change of a parameter
value. The sensitivity of the entire output vector would be
possible to compute, but we couldn’t mathematically identify the
best output vector - while we could identify characteristics such
as the smallest rise time or the greatest standard deviation.
These scalar results are needed in order to make decisions about
their relation to parameter values, and to use that decision to find
parameter values that correspond with a goal; for example, to
make a best or worst result.

For more detail on Simulation Templates, including how they
work and instructions on how to create your own scripts, please
see the on-line HTML based help. Access to this help is available
from the schematic’s on-line help, IsSpice4’s on-line help, and
the Intusoft web site.
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Mixed-Mode Simulation

Mixed-Mode Simulation Overview

Modern circuits often contain a mixture of analog and digital
circuits. To simulate these circuits efficiently, a combination of
analog and digital simulation techniques is required. IsSpice4
supports three ways to model mixed-mode circuits.

• Exact transistor representations
• Boolean Logic Expressions
• Digital Primitives using an Embedded Logic Simulator

Exact representations are used in the analysis of analog
circuits such as an IC where a close inspection of its I/O
characteristics is needed, or for signal integrity problems where
accurate waveforms are desired. They are created using
subcircuit macro models. Boolean logic expressions are
delayless functions that are used to provide efficient logic
signal processing in an analog environment. They are created
using the B element. These two modeling techniques use
analog algorithms to provide the solution. The third method
involves the use of digital primitive elements and the native
event-driven simulation algorithm that is built into IsSpice4.

Digital circuit simulation differs from analog circuit simulation in
several respects, but the primary difference is that a solution of
Kirchoff’s laws is not required. Instead, the simulator only
determines whether a change in the logic state of a node has
occurred and then propagates this change to connected
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elements. Such a change is called an “event”. When an event
occurs, the simulator examines only those circuit elements that
are affected by the event. By comparison, analog simulators
iteratively solve for the behavior of the entire circuit because of
the forward and reverse transmission properties of analog
components. This difference results in a considerable
computational advantage for digital circuit simulators, which is
reflected in the significantly greater speed of digital simulations.
Therefore, it is vastly more efficient to simulate the digital
portions of a design with a digital simulator, and the analog
sections with SPICE. Only in cases where the two are inextricably
dependent should a mixed approach be undertaken.

Two basic methods of implementing mixed-mode simulation
are the “native mode” and “glued mode” approaches. Native
mode simulators implement both analog and digital algorithms
in the same executable, and use one input netlist. Unlike SPICE
3, which is designed mainly for analog simulation and is based
exclusively on matrix solution techniques, IsSpice4 includes
BOTH analog and event-driven simulation capabilities in the
same executable. Thus, designs that contain significant portions
of digital circuitry can be efficiently simulated together with the
analog components.

The event-driven algorithm in IsSpice4 is general purpose and
supports non-digital types of data. For example, elements can
use real or integer values. Because the event-driven algorithm
is faster than the standard SPICE matrix solution algorithm,
reduced simulation time for circuits that include these elements
occurs, as compared to a simulation of the same circuit using
only analog models.

Glued mode simulators actually link two separate simulators,
one analog and the other digital. This type of simulator must
define an input/output protocol so that the two executables can
communicate with each other effectively. The communication
constraints tend to reduce the speed, and sometimes the
accuracy of the complete simulator. On the other hand, the
glued approach allows the component models for the separate
executables to be used without modification.

DIGITAL SIMULATION OVERVIEW
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Native Digital Simulation

The following 4 sections describe the event-driven simulator
with relation to digital code models. Hence, it is sometimes
referred to as a digital simulator even though the same algorithm
processes all types of event-driven nodes. Most of the
discussions center around how digital simulation is performed
and digital values are processed. With the exception of how
digital states are characterized, the information also applies to
other user-defined node types such as real or integer.

States, Logic Levels and Strengths

The logic simulator in IsSpice4 is a 12-state digital simulator. A
state refers to the value of a digital node. A state is characterized
by a logic level and a strength. IsSpice4's digital simulator
contains 3 logic levels and 4 strengths. Hence, the digital
simulator is referred to as a 12-state simulator.

Logic Levels
There are three logic levels used to describe the state of a
digital node. They are:

0 Low
1 High
U Unknown

These logic levels do not correspond to any particular voltage.
A Low has no analog voltage representation within the digital
simulation. Special bridges, discussed in subsequent sections,
are used to translate between analog voltages and logic levels.

Strengths
There are four strengths that are used to further describe the
state of a digital node. They are:

s STRONG
r RESISTIVE
z HI_IMPEDANC
u UNDETERMINE
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Each of these strengths represents an output classification of
a digital element. A STRONG strength represents the output ,
which is expected from a standard bistate totem pole output. A
HI_IMPEDANCE strength represents the output from an open
collector device or a disabled tristate device. An
UNDETERMINED strength represents an output that is
generated by an unknown enable input for tristate devices. A
RESISTIVE strength falls between the strength of a Strong,
Low impedance, and a High impedance, disabled output. This
strength would be equivalent to the on state of an open
collector, pulled up to a high state.

When you combine the logic level with the strength, you obtain
a value, referred to as the state, for a digital node. The digital
simulator uses the states of all nodes attached to an input to
determine the final controlling state of the input.

Digital values are specified, for digital input sources or state
machines, as the logic level followed by the strength. Hence,
you will use 0s to represent a Strong logic 0, or 1z to represent
a high disabled tristate condition.

Events and Event Scheduling

An event is defined as any change in the state of a digital node.
Input to a digital circuit is typically a list of desired logic states
for particular digital nodes and the time in which these states
are to occur. This event list is called an event schedule. As the
digital simulation is performed, one or more of the scheduled
events will produce other events that will be added to the
schedule. The event-driven portion of the simulation stops
when all events have been processed.

For purely digital circuits, the digital source produces the set of
events that are to be scheduled. Additional events are scheduled
depending on the activity of the circuit.

For mixed-mode simulations, events are scheduled by any
combination of digital sources and/or analog signals fed to the
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Fall Delay
4µs

Rise Delay
4µs

digital circuitry through the use of a special device called an
Analog-to-Digital node bridge (A-to-D). Briefly, this device
generates a logic level output with a STRONG strength, which
depends on the input signal and the bridge’s model definition.
The state and the time in which it was generated are passed
to the digital simulator and scheduled as an event.

Gate Delays

IsSpice4 uses an ideal delay model, which is also known as
the transmission line, or group delay model. This type of
model propagates the input directly to the output, delayed by
the time specified in the element’s model statement. Most
digital models allow separate rise and fall delays.

As an example, the output of a simple buffer circuit is shown.
The rise delay and fall delay were both specified as 4µs.

The delay of an output event from an input event is formed by
adding the device’s delay to the start of the input event. The
resulting event is an exact representation of the input event
delayed by the time specified in the device's model statement.

A buffer
containing a
4µs rise and fall
delay.

1 2

A1
BUFFER

V1

VOUTVIN

OutputInput



52

GATE DELAYS

When interfacing analog signals, delays can be accumulated
through the A-to-D interface model. In this case, a rise delay is
accumulated from the time the analog input signal reaches the
in_low model parameter. A fall delay is accumulated from the
time the analog signal reaches the in_high model parameter.

Rise and Fall Times

Rise and fall times are analog artifacts of digital circuits. As
such, they are not included in the digital simulator or in any of
the digital models. All rise and fall times are added during the
Digital-to-Analog conversion made by the (D-to-A) node bridges.
All rise and fall times are implemented as linear transitions from
the defined high to low voltage, and do not represent the 10%-
90% slope, but rather the 0%-100% slope. Rise and fall times
are added after all delays have been accumulated.

Rise and fall
times are
specified as 0%
to 100% values,
not 10% to 90%
values.

Input

Rise Time
1µs

100%

Output

Rise Delay
4µs

0%
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Node Types and Translation

Before you develop a mixed-mode circuit, it is important to
understand how analog and event-driven models are connected.
Every element has one or more input and/or output ports. Each
port is characterized by a node type. IsSpice4 contains two
basic node types; analog, which connects to the SPICE 3
simulation kernel, and event-driven, which connects to the
discrete event-driven simulator. Event-driven, nodes can be
subdivided into digital, real, integer, and user-defined types.

Real node types use double-precision floating point data. They
are useful for evaluating sampled-data filters and systems.
Integer node types use integer data. They are useful for
evaluating round-off error effects in sampled-data systems.
The Intusoft Code Modeling Kit allows you to define alternate
node types that operate with the event-driven algorithm. These
“User-Defined Nodes” allow code models to pass arbitrary data
structures without having to worry about conversion to a
predefined node type. IsSpice4’s digital simulation is actually
implemented as a special case of this User-Defined Node
capability, where the digital state is defined by a data structure
that holds a Boolean logic state and a strength value.

All IsSpice4 elements are classified by their node types. Hence,
all traditional SPICE 3 elements are classified as analog
because they have analog node types. Code models may be
analog, event-driven, or both (a hybrid) depending on their
node types. For example, digital code models have only digital
inputs and outputs.

In order to connect elements with different node types, a
translational element known as a bridge must be used. The
schematic will insert the correct bridge if the model or subcircuit
entry in the library contains the *FAMILY syntax extension. See
the SpiceNet help on “Library Structure” for more information.

For example, to connect an analog element to a digital element,
you must use an analog to digital (A-to-D) node bridge.
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Analog and Digital Interfaces

When analog elements are mixed with digital elements, special
connections between the two must be made. These connections
must be capable of translating continuous time analog signals
to and from discrete digital states. Special components called
Analog-to-Digital (A-to-D) and Digital-to-Analog (D-to-A) Node
Bridges are used for this task. These node bridges are the key
to effective mixed-mode simulation.

Translating Analog to Digital (A-to-D)
The Analog-to-digital (A-to-D) bridge is used to translate a
continuous time analog signal into a discrete digital event. The
A-to-D produces a STRONG digital event with a logic level
determined by the input signal and the in_low and in_high
model parameters. If the input analog signal falls between
in_low and in_high, an undefined state is generated. These
values are analogous to the VIH and VIL parameters used to
describe the input of TTL gates. The delays, rise_delay and
fall_delay, associated with this model, are accumulated after
the voltages, in_low or in_high respectively, have been reached.

The input to the A-to-D is a high impedance path and does not
load the circuit. The input can be any voltage or current.

Translating Digital to Analog (D-to-A)
The Digital-to-Analog (D-to-A) bridge is used to translate a
discrete digital event into a continuous analog signal. The D-to-
A outputs an analog value of out_low for a logic 0 input, and
out_high for a logic 1 input. The output change has a t_rise, or
t_fall, implemented as a linear transition. Any undetermined
input generates an analog output voltage equal to the out_undef
parameter. The output of a digital gate is essentially a voltage
source with infinite driving capabilities.

Note: The arrow in the A2D and D2A schematic symbols
indicates the signal direction. For example, for the A2D the
input signal must be analog. An error will result if you try to
connect the digital side of the A2D to a digital output.

Node bridges
are inserted by
the schematic
for digital parts
taken from the
ICAP/4
libraries.
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VCC

VEE

VCC

VEE

A D 

A D 
A D 

A D 

A D 

The arrow in
the A2D and
D2A symbols
indicates the
signal direction.
You can’t use
an A2D as a
D2A by flipping
it!!!

Node Bridges
must be used
when
connecting any
analog node to
any kind of
event-driven
node.

Mixing Digital and Analog Circuitry

In order to speed a mixed-mode simulation, every attempt
should be made to minimize the use of A-to-D and D-to-A
elements. Large groups of digital elements should be connected
together directly. The interface change between analog and
digital circuitry should only be made when absolutely necessary.

Each D-to-A element will introduce a set of break points around
the minimum and maximum voltage in order to provide a
smooth transition and to aid convergence. Inserting excessive
D-to-As will add excessive numbers of breakpoints, increasing
memory use and decreasing simulation speed. A similar problem
arises when A-to-Ds are used excessively. In order to ensure
that an event is triggered accurately, the values at the inputs of
A-to-Ds are checked at every recorded time point. It is easy to
see that if numerous A-to-Ds are used, the simulation will spend
a great deal of time checking to see if an event should be
generated.

As an example, the circuit on top shows a hypothetical set of
connections. The circuit on the bottom shows how the circuit
would actually be drawn in a schematic. Note the use of bridges
at each analog-digital interface.

Analog-Digital
Interface
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Viewing Digital Data

For digital nodes, the SpiceNet schematic will automatically
insert a D-to-A node bridge if you put a test point on a digital
node. If you are working from a netlist you will have to insert the
bridges manually. The following schematic shows where the
schematic would insert node bridges. Note that even though
the bridges are inserted, the will not be shown on the schematic.
They will however, be represented in the IsSpice4 netlist.

Once the D2A symbol is connected to the digital node, a normal
test point symbol, or IsSpice4 .PRINT statement can be added.
No load is required on the output of the D-to-A.

Creating Digital Stimulus

You can not use independent or dependent voltage or current
sources to drive digital circuits. This is because you can not
connect an analog node directly to a digital node. There are
several ways to create digital stimulus.

1) Use the Digital Source or Digital Oscillator (DVCO) code models. The digital
source requires an external text file describing the stimulus (See the Code Model
Syntax chapter). The digital source can produce data for any number of bits.

2) Use any analog type of stimulus, or signal. SpiceNet will automatically connect an
A-to-D node bridge between the source and the digital circuitry.

3) Use the Pullup and Pulldown code models for logic 1 and logic 0 stimulus.

VIEWING DIGITAL DATA

Analog
Ground

D i g i t a l
Pulldown logic
0

5

2
6

7
8

A D 

1

V1

A D 

3

9
Dsrc A D 

4
A n a l o g
Source

Digital
Nodes

D i g i t a l
P u l l u p
logic 1

Analog Node w/ test point
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Referring to the schematic in the previous section, notice how
the analog source and A-to-D are used to drive the nand gate
on the left. The DSRC symbol represents a single bit digital
source. Other predefined symbols are available and other bit
configurations can easily be created. Notice the pullup and
pulldown symbols. They can be used whenever a steady logic
1 or 0 stimulus is required.

Reducing Circuit Complexity

One method of increasing the efficiency of the simulation is to
take advantage of the state machine element. This code model
can be used to replace large sections of clocked combinational
circuitry, such as a counter, with an equivalent, but much faster,
representation. For instance, a 4 state up-down counter, as
shown, can be simulated with a single state machine model,
essentially replacing the flip-flops and control gates that would
normally be required.

The state machine code model is configured by an initialization
(text) file that is read when the circuit file is loaded by IsSpice4.
The file should be stored in your working directory. The format
for the file is given as;

Present State Outputs Inputs Destination State

Thus in order to describe the up-down counter represented by
the following state diagram;

State 0
Outputs 0,0

State 1
Outputs 0,1

State 2
Outputs 1,0

State 3
Outputs 1,1

Input 1

Input 0Input 0Input 0

Input 0

Input 1Input 1

Input 1

The state
machine code
model can be
easily
configured to
represent a
wide variety of
clocked
combinational
digital circuitry.
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REDUCING CIRCUIT COMPLEXITY

Strengths
s=strong

u=undetermined
r=resistive

z=hi_impedance

See the State
Machine in
the Code
Model Syntax
chapter.

The state initialization file would look something like;

*Present Outputs Input(s) Destination
*State @this State

0 0s 0s 0 -> 3
1 -> 1

1 0s 1z 0 -> 0
1 -> 2

2 1z 0s 0 -> 1
1 -> 3

3 1z 1z 0 -> 2
1 -> 0

The output levels that are to be assumed by the state machine
are defined by the logic level and output strength. In this case,
the outputs are 0s, representing a STRONG low digital signal,
and 1z, representing a high enabled tristate digital signal. All of
the available logic levels and strengths are discussed in the
States, Logic Levels and Strengths section at the beginning of
this chapter.
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IsSpice4 Netlist

A circuit is described to IsSpice4 by a netlist. A netlist is a
standard text file that contains several types of statements that
describe the circuit and tell the simulator what to do. These
statements fall under the following categories: Element
Descriptions, Analysis Control, Device Modeling, Output Control,
ICL functions, Simulation Templates, and Miscellaneous
statements used for netlist construction.

Netlist Definition
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Element description statements contain the device type, nodal
connectivity, and parameter values. A typical element description
statement for a resistor is:

Rload            4        9 100k

Analysis control statements determine what type of analysis
the simulator will perform and how the data will be collected.
There is also access to a variety of internal program defaults
through the .OPTIONS and ICL Set statements. A typical
control statement to run a transient analysis is:

.tran    1u    200u

In addition to the parameters on the Element Description line,
device modeling statements are required to further describe
some elements. A typical .Model statement for a diode is:

.MODEL DIODE D(IS=1e-14 BV=6)

Output Control is specified through the use of .PRINT, .PLOT,
and .VIEW statements. Most, but not all analysis control
statements require one of these statements to generate results.
Output can also be generated using the ICL Save, Print, View,
Show, and Showmod commands.

Netlist Structure

The statements in the main part of the IsSpice4 netlist can be
in any order. However, the statements in the ICL control block
are order dependent. There are six essential statements that
must be present in order to perform a simulation:

A descriptive name
used to refer to the
model call

Valid reference
designations
include:
R1, QName,
and M3n01.

First letter
defines the
device type

First letter + a
name makes a
unique ref-des

Circuit connectivity is
defined by the node
numbers

Parameters that
describe the
device

Designates a
model
definition

Text may be in
upper or lower
case.

Descriptive
value fields
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 {Main Netlist

.Control

...

...

.Endc

Title Line
ICL Control Block
Analysis Control Statements
Output Control Statements
Proper Circuit Topology
Stimulus or Power
.END Statement

The Title and .END lines

All netlists must have a title line and a .END line. The title is the
first line in the netlist. Any circuit information on this line will be
ignored by IsSpice4.

The .END statement must be the last line in the netlist. This
marks the end of the circuit description.

ICL Statements and Control Block

ICL stands for Interactive Command Language. It is an extension
of the basic set of functions that run SPICE language and
provides expanded printing/data output capabilities, Simulation
Breakpoints, and multiple analysis loops. ICL statements can
be entered directly in IsSpice4’s simulation control dialog’s
Script window or run batch-style from the input netlist. The
IntuScope5 waveform analyzer also uses ICL commands. If the
IsSpice4 Script window is used, the ICL statements can be run
interactively. This allows easy script debugging. The ICL section
of the netlist begins with a “.control” line and ends with a “.endc”
line. Standard IsSpice4 “dot” control statements should be
placed after the ICL block. ICL statements can also be issued
one at a time in the netlist, without the .control and .endc
wrappers, simply by placing “*#” before the command. The
usage of ICL functions is explained in Chapter 11. The syntax
reference guide for all ICL functions can be found in the on-line
help.

The first line
must be a title
line.

The ICL block
must be at the
top of the netlist
before IsSpice4
“dot” control
statements and
after the title.
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Analysis Control Statements

The group of statements used to specify what type of analyses
will be performed are called “control statements”. These
statements begin with a dot, “.”, followed by a control statement
directive.

For Example:
.AC DEC 10 1HZ 1MEGHZ Run an AC Analysis
.TRAN .1US 10US Run a Transient Analysis
.OPTIONS RELTOL=.01 Change Default Options

Note: The statements required to run a particular analysis will
vary. For a transfer function, only the .TF statement is needed.
For a DC analysis, only the .DC and .PRINT DC statements are
needed. However, for some analysis types, such as the AC or
distortion analysis, an independent source with the proper
stimulus, along with a control statement for the analysis type
and a control statement to collect data, must all be present for
the analysis to run properly. For example, to run an AC
analysis, there must be a .AC statement and a .PRINT AC
statement, as well as the AC keyword on at least one independent
source.

Output Control Statements

Output for analog nodes is obtained by including one or more
of the following control statements in the netlist: .PRINT, .PLOT
or .VIEW. ICL commands can also be used to create output.
Digital and other types of event driven nodes must be translated
to analog nodes before output can be generated. For more
information, please refer to the Viewing Digital Output section
in the Mixed-Mode Simulation chapter.

PRINT and PLOT
The .PRINT and .PLOT statements are used to generate scalar
and vector data in the output file. Data for the following quantities
can be saved: node voltages, device currents, computed
device parameters, and math expressions containing
aforementioned quantities. Most major analysis types (AC, DC,

Analysis control
statements can
be included in
the ICL control
block or the
Simulation
Control dialog.
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Specifies
which node
to scale

Specifies
lower and
upper scaling

Designates
graphical
output

Specifies that the
output is for a
transient analysis

Voltages, currents, and
device parameters can
be recorded

Designates
tabular output
data

Specifies that the
output is for a DC or
transient analysis

TRAN) require at least one print or plot statement to appear in
the netlist. Typical .PRINT statements are:

.PRINT DC V(1)  I(V1)

.PRINT TRAN @M1[gm]  V(12:XSUB)

Node voltages are recorded with respect to ground unless a
voltage difference is specified. Therefore, specifying V(3,0) is
invalid. A voltage difference is specified by including two nodes
separated by a comma within parentheses. For example, .print
tran V(3,4) will generate the voltage difference between nodes
3 and 4.

VIEW
The .VIEW control statement is used to scale a waveform that
is shown in the real-time simulation display. One or more of
these statements can appear in the netlist. Only one vector is
scaled by each statement. A typical .VIEW statement for a
transient analysis is:

.VIEW TRAN V(1) -1     1

Measuring Current
Current can be measured through any device and for
semiconductor junctions. Voltage sources are not required
as in SPICE 2 programs. Subcircuit currents can also be
measured.

Example: Measuring Semiconductor Currents
.PRINT TRAN @q2[ie] @m1[id]
Example: Device Currents
.PRINT TRAN  @r1[i] @Lcore[i]

The above examples measure the BJT emitter, MOSFET drain,
resistor, and inductor currents.

The @notation
is used to
reference
computed
device
parameters
listed in the
IsSpice4 on-line
help. #:XName
is the syntax
used to
reference
subcircuits.

The .VIEW
statement
overrides the
default scaling
values set by
the .OPTIONS
VSCALE,
ISCALE, and
LOGSCALE
parameters.
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Print Expressions
Mathematical combinations of any set of PRINT vectors can be
saved in the output file. A variety of built-in math functions are
also available. Please refer to the ICL let and alias commands
discussed in Chapter 11 for more information.

Circuit Topology Definition

The topology of a circuit is defined by Device Description
statements. These statements will define a device type, its
nodal connections and any parameters necessary to describe
the device. Digital models, and other code models, have
special netlist requirements. See the Using Code Models
section.

Device Types
The type of device, either passive, active, code model, or
subcircuit, is specified by the first letter of the name given in the
Device Description statement. This is also referred to as the
reference designation, or ref-des.

Device Definition
Rload  1  2  100 defines a 100W  resistor
Qin1 2  4  5  Spnp calls a transistor named Spnp
VIN  10  0  5V defines a 5 volt voltage source
A1 22 25 s_001 calls the code model s_001
Xcomp 2 3 5 6 10 11 LM311 calls a subcircuit named LM311

In the above examples, the first letter of the ref-des in each line
is used to define the type of device. The rest of the ref-des is
used to make the element description unique. Any alphanumeric
string can be placed after the first letter. You can not use
duplicate reference designations.

Node Connections
All connections between devices are determined by node
numbers, or node names, given on the Device Description
statement. Nodes can be defined by any alphanumeric string.
However, positive integers are usually used for clarity. For
example, the voltage source on the next page is defined by:

ISSPICE4 allows
ref-des names
with more than
8 characters.

Digital and
other types of
code models
have special
netlist
requirements.
Please refer to
the Using Code
Models section
in this chapter.
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Out

In VM1  1  2
where V defines a voltage source, VM1 is the unique ref-des
name, and the source is connected between nodes 1 and 2.

A connection is made by assigning the same node number or
node name to the devices you want to connect. For example,
the circuit to the left would generate the following lines:

VM1 1  2
R1  1  In  100k
L1  2  Out  10u

Notice the use of the node names In and Out to describe the top
connection of the resistor and the bottom connection of the
inductor.

A component must have a connection for each input or output
terminal defined for the device. By definition, a resistor has two
terminals. Hence, a node must be assigned to each of these
terminals.

Exceptions for Node Names
To avoid any conflicts, names should be restricted to
alphanumeric characters. Characters and names that are used
in IsSpice4 statements, such as “+, /, ?, |, -, ~, &, sin, abs, TIME,
FREQ, TEMP, SET, TRAN, STOP, or SHOW, etc. should not
be used for node names. It is recommended that SPICE 2 style
limitations such as names beginning with a letter instead of a
number, are maintained. For example, it would be better to call
a node “A1” rather than “1A” so that the 1A could not be
accidently confused with a value of one Ampere.

When generating output for a node voltage, it is important to
note that a node name must appear on the .PRINT line without
parentheses or the V voltage designator. This is different from
a node number specification. The example below generates
voltages for the node number 33 and the node name “output”:

Correct Incorrect
.PRINT TRAN output V(33) .PRINT TRAN V(output) V(33)

1

2

VM1
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For the B dependent source, or in any control statement other
than the .PRINT statement, node names are referenced the
same as node numbers. For example, V(node_name).

Correct Incorrect
B1 1 2 V = V(output) B1 1 2 V = output

Ground
Node 0 is reserved by IsSpice4 to represent ground, whether
it is in the main circuit or in a subcircuit. Every circuit must have
at least one connection to ground. Note: Unlike SPICE 2,
IsSpice4 does not require a DC path to ground for every node,
although this is generally a good rule of thumb.

Component Values and Model Names
After declaring the proper device type and node connections,
the final step is to give the device an appropriate value or
values. Most devices require at least one parameter. For
example, a definition for a resistor would be:

RF  23  1  100k

where the resistor RF is connected between nodes 23 and 1
and has a value of 100kW.

Numerical entries can use an integer format, floating point ‘E’
format, and be scaled by attaching one of the following entries:

T ......... 1E12 MIL ..... 25.4E-6
G ........ 1E9 U ........ 1E-6
MEG ... 1E6 N ........ 1E-9
K ........ 1E3 P ......... 1E-12
M ........ 1E-3 F ......... 1E-15

Units following the scaling parameter are ignored as long as
they are connected to the value and not separated by any field
delimiters (spaces, commas, etc.). For example, the numbers
1000, 1000.0, 1K, 1KV, 1KOHM, and 1E3 are all equivalent
numerical representations.

Node names
are used
differently in the
.PRINT
statement than
in other control
statements.

Ground, node
0, is only used
for analog
devices. For a
logic 0 (digital
ground), digital
devices should
use the
pulldown code
model.
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Note: Resistors, capacitors, and inductors can accept negative
values.

Certain devices require a model name as a parameter. Model
names can be upper or lower case. Any additional parameters
can be added on the line separated by delimiters. The example
to the left would be defined by;

D1 4 22 DIODE

The line describes a diode, D1, connected between nodes 4
and 22, calling a model named “DIODE”. To make this call to a
diode complete, there must be a .MODEL statement somewhere
in the netlist to define the model “DIODE”.

Note: Unlike in SPICE 2, model names can have more than
eight characters and begin with a number. However, for
backward compatibility with SPICE 2, this feature shouldn’t be
used.

MODEL Statements

The .MODEL statement contains a list of parameters that
define a device’s behavior. The parameters are inserted into
equations, which are evaluated during each analysis. A .MODEL
statement consists of the .MODEL keyword, followed by a field
containing a unique model name, a keyword describing the
type of model, and the parameters used to describe the device.
An example would be:

.MODEL DN4148 D (IS=8E-13 BV=6)

Here, the model name is “DN4148”. The “D” entry shows that
the model statement describes a diode. And finally, the
parameters IS and BV describe the diode’s behavior. The

Negative values
are allowed.

All code
models,
including digital
elements,
require a
.Model
statement.

4

22

D1

Designates a
model
statement

Name given
to identify the
model

Specifies a
diode
model type

List of diode
parameters
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Model Parameters - ref-des_name:Xname1:Xname2:... : [Param_name]

.MODEL STATEMENT

parameter list will vary, but any parameters aren’t listed will be
set to their default values. The .MODEL statement must be
called by a diode Device Description line, for example:

D1  2  34  DN4148

Multiple diodes may refer to a single model statement.

Model Information In Subcircuits
In order to refer to input and computed model parameters inside
subcircuits, IsSpice4 uses the following syntax:

where Xname1 and Xname2 are the names, including the letter
X on the subcircuit call line, and ref-des is the name including
the keyletter on the device call line. For example, to output the
model parameters from the model called by J1, we would use
the following:

.control ; Beginning of ICL control block
op
showmod J1:X1 ; Displays the model parameters for the
.endc ; JFET J1 in subcircuit X1

Subcircuit Netlist

A subcircuit is a set of components that describe a subsystem
or component that can not be defined with a single device
description line. Subcircuits are constructed by encompassing
a netlist that describes the circuit with a .SUBCKT statement at
the beginning, and a .ENDS statement at the end. The .SUBCKT
line contains the name of the subcircuit and the node numbers
that connect to the input and output points in the subcircuit. The
format is:

.SUBCKT [name] [nodes]

The .ENDS statement marks the end of a subcircuit description.

The Showmod
function is
described in
Chapter 11.
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For example, the following describes an RC subcircuit;

.SUBCKT RC 1 2
R1 1 2 100K
C1 2 0 10P
.ENDS

The components R1 and C1 define the subcircuit. The subcircuit
has two external connections at nodes 1 and 2. Notice that
node 0 is used inside the subcircuit. This node 0 and node 0 in
the main circuit both represent ground. This subcircuit would be
called in the main circuit netlist by the statement;

XRC 22 44 RC

where nodes 22 and 44 in the main circuit would connect to
nodes 1 and 2 in the subcircuit.

Node and Device Information In Subcircuits
In order to refer to nodes and computed device parameters
inside subcircuits, IsSpice4 uses the following syntax:

where Xname1 and Xname2 are the names, including the letter
X on the subcircuit call line, ref-des is the name including the
keyletter, and Param_name is the name of an input or output
device parameter (See Appendix B). For example, to print the
subcircuit voltage at node 2 and the current in resistor R1, we
would use the following:

XSUB  In Out  TEST ; Call to subcircuit

.SUBCKT TEST 1 3
R1 1 2 1K
L2 2 3 1UH
C3 3 0 1P
.ENDS

.PRINT TRAN V(2:XSUB) @R1:XSUB[i] ; Print statement

See the on-line
help for more
information on
Device
parameters.

Node Voltages - V(node:Xname1:Xname2:...)
Device Parameters - ref-des_name:Xname1:Xname2:...[Param_name]
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Miscellaneous Netlist Statements

Comment
Comment lines are ignored by the IsSpice4 simulator. Any line
beginning with an asterisk, “*”, is considered a comment line.
Any text at the end of a line that is preceded by a semicolon is
considered an in-line comment. Comment lines can be inserted
anywhere in the netlist, and have absolutely no effect on the
simulation.

For Example:
* This is a comment line
R1 1 0 10   ; This is an in-line comment

Continuation line
In certain circumstances, in may be necessary to use more
than one line to describe a statement. A plus sign, “+” in the first
column is used to signify a continuation line. Any line with a “+”
in the first column will be interpreted as part of the preceding
line. There is no limit to the number of continuation lines.

For Example:
Vin 1 0 pwl 0 1 10u -1 20u 1 30u -1 40u 1 50u -1
+ 60 1 70u -1 80u 1 90u -1 100u 1 110u 0

Delimiters and the Comma

Spaces, new lines, the equal sign, comma, a right parentheses
or a left parentheses are all evaluated as delimiters and are
used to separate various fields in a netlist.

A special exception is made for the comma. A comma is
evaluated as a comma when it is inside a set of parentheses.
It is used as a delimiter everywhere else. For example, “.PRINT
TRAN V(1,2)” will evaluate the comma as a comma and record
the difference between the voltages. The statement “.PRINT
TRAN V(1),V(2)” will evaluate the comma as a delimiter and
produce the voltage at node 1 and the voltage at node 2.

There is no
specific limit to
the number of
continuation
lines that can
be used in
IsSpice4.
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IsSpice4 Netlist Construction

Now that the format of the different lines has been briefly
discussed, it is time to discuss the construction of the netlist
itself. As stated earlier, IsSpice4 can appear in any order except
for the title, the ICL control block, and the .END statement.
These three items are position-dependent. A typical netlist is
shown below.

SAMPLE CIRCUIT
.control
save all
op
show  q1 q2
.endc
.AC  DEC  10  1  1G
.TRAN   1N   100N
.OPTIONS   ACCT
.PRINT AC   I(V3)   IP(V3)
.PRINT TRAN  V(4)    I(V3)   V(7)    V(8)
V1  1  0  AC  1  PULSE  0  1  0  0  0  50N
C1  1  2  .01U
R1  2  7  390
Q1  3  7  0  QN2222
Q2  11  3  5  QN2222
Q3  8  5  4  QN2222
R2  7  5  390
R3  4  0  50
R4  5  0  390
V2  6  0  -2
R5  6  7  820
V3  9  8
D1 11 9 DLASER
R6 11 3 750
V4 11 0  5
.MODEL QN2222 NPN(IS=1.9E-14 BF=150 VAF=100
+ IKF=.175 ISE=5E-11 NE=2.5 BR=7.5 VAR=6.38
+ IKR=.012 ISC=1.9E-13  NC=1.2 RC=.4 XTB=1.5
+ CJE=26PF TF=.5E-9 CJC=11PF TR=30E-9
+ KF=3.2E-16 AF=1.0)
.MODEL DLASER D N=2
.END

Circuit
Description

Title

Simulator
and
Output
Control

ICL Control
Block

Models

.END
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IsSpice4 Output Files

The output file from IsSpice4 is compatible with output files
generated by Berkeley SPICE version 2. Data is stored in the
same tabular and printer-plot formats. For major analysis
types, the only differences are in the structure of the analysis
banners and the addition of an index column for tabular .PRINT
data.

IsSpice4 output files have the same name as the input file, but
the file extension “.out” replaces the input file extension “.cir”.

An additional feature of IsSpice4 is that a complete netlist, with
all subcircuits flattened, can be saved in the output file if the
.OPTIONS parameter LIST is inserted. This can be quite useful
for troubleshooting subcircuits. The flattened netlist format is:

device ref des : Xname1 : Xname2 : ...

For example:

rp:x1 7 9 10k
rxx:x1 7 0 10meg
rp:x2 7 9 10k
rxx:x2 7 0 10meg

The first line refers to the resistor “rp” in the subcircuit that is called by
X1. The last entry refers to the resistor “rxx” in the subcircuit called by
X2.

In addition, node voltages for subcircuit nodes will also use this
extended syntax. For example:

 V(10:x1) -2.16891e-08
 V(11:x1) -2.16891e-08
....
 V(10:x2) 2.745771e-03
 V(11:x2) -1.85348e-08
 V(12:x2) -1.85348e-08

The first line refers to the node voltage of node 10 in subcircuit
1. The last line refers to the voltage at node 12 in subcircuit 2.
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Note: Reference designators that only have the IsSpice4
keyletter but no name will have an underscore appended to the
name. For example, the inductor in

.Subckt Test 1 2 3
L  1 2 10u
R1 2 3 1
.Ends

would be referred to as @L_. Hence, the flux for this element
would be obtained by @L_:Xname...[flux].

Simulation Template Output
Output data produced Simulation Template based analyses
(RSS, EVA, Worst Case, and Sensitivity) is placed in the output
file. The output data format is controlled by the scripts in the
template file. These may be modified using any text editor.

Tabular Output Data Index
The tabular output data produced by the .PRINT statement will
include a column called Index. The Index column contains a
number for each data point that is equal to the location in the
vector. The index value is used by various ICL commands to
access data within a print vector.

Error And Warning Messages
All error and warning messages encountered during the
simulation will be placed in the Errors and Status Window.
Since some of the errors can cause a simulation to abort, the
error and warning messages are also placed in a separate file
with the same name as the input file and the file extension
“.ERR”. For example, errors in SAMPLE.CIR are placed in a file
called SAMPLE.ERR. This is different than SPICE 2, which
placed error and warning messages somewhat randomly in the
output file.

Important Note: If there are any problems with the simulation,
the data appears to be in error, or if there is a flashing question
mark symbol at the upper left corner of the IsSpice4 screen, you
should check the .ERR file for messages.



74

CODE MODEL NETLIST STRUCTURE

Code Model Netlist Structure

IsSpice4 includes a special set of C code language based
elements. These “code models” can be used like any standard
SPICE primitive device (Diode, BJT, etc.). Code models,
however, use a slightly different netlist syntax. All code model
call lines begin with the letter “A” and require a companion
.Model statement. Like SPICE semiconductors, more than one
code model can use a previously defined .Model statement.
The following example demonstrates the use of the limiter code
model;

A1 1 2 limit1
.Model  limit1  limit(in_offset=.1 gain=2.5 out_lower_limit=-5
+ out_upper_limit=5 limit_range-.1 fraction=FALSE)

The expected node order for each code model call line can be
found in the Port Table, which is given for each device in the
Code Model Syntax chapter. The Port table describes the types
of inputs that can be used to drive the device and the default
input type. For example, the default input type for the limit code
model is a voltage.

All the model parameters for each code model and their
defaults, if any, are described in the Parameters Table and in
the Code Model Syntax chapter.

Node Connections
Code models can have any combination of three different types
of nodal connections; single-ended (ground referenced),
differential, or vector. A single-ended node consists of a normal
SPICE node designation. A differential node is specified by
grouping two nodes in parentheses, such as;

a (1 2) 3 limit1

The parentheses indicate that the input to the element is a
differential signal V(1)-V(2). Vector nodes are a bus type
connection and are normally used on digital code models. For
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example, there is only one Nand code model, but it supports a
vector type input. This allows the model to simulate any input
configuration, for example, a 3-input Nand gate.

Anand [1 2 3] 4 nand3

Node 4 is a single-ended output.

Node Modifiers
The types of inputs that can be used for a particular code model
are specified in the model’s Port Table. The default port type
entry specifies the type of input signal expected if no port
modifier is present. To use an alternate type of input, one of the
modifiers listed in the following Port Modifiers table can be
inserted preceding the node number.  Note: the alternate input
must still be one of the types listed in the “allowed types” entry
of the Port table.

Port Modifier Symbol Interpretation
%v represents a single-ended voltage port - one node name or

number is expected for each port.
%i represents a single-ended current port - one node name or

number is expected for each port.
%g represents a single-ended voltage-input, current-output

(VCCS) port - one node  name or number is expected  for
each port.  This type of port is automatically an input/output.

%h represents a single-ended current-input, voltage-output
(CCVS) port - one node  name or number is expected  for
each port.  This type of port is automatically an input/output.

%d represents a digital port - one node name or number  is
expected for each port.  This type of port may be either an
input or an output.

%vnam represents the name of a voltage source, the current through
the source is taken as the input.

%vd represents a differential voltage port - two node names or
numbers are expected for each port.

%id represents a differential current port - two node names or
numbers are expected for each port.

%gd represents a differential VCCS port - two node names or
numbers are expected for each port.

%hd represents a differential CCVS port - two node names or
numbers are expected for each port.

Square braces,
[ ], are used to
enclose vector
input nodes.
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A port modifier symbol is not required if the default-type input
signal is used, which is normally the case. Non-default port
types (for multi-input or multi-output vector ports) must be
specified by placing one of the symbols in front of each vector
port.  If all ports of a vector port are to be declared as having the
same non-default type, then a symbol may be specified
immediately prior to the opening bracket of the vector.  The
following examples should make this clear:

Example 1: - Specifies two differential voltage connections,
one to nodes 1 & 2, and one to nodes 3 & 4.

%vd [1 2 3 4]

Example 2: - Specifies two single-ended connections to node
1 and node 2, and one differential connection to nodes 3 & 4.

%v [1 2 %vd 3 4]

Example 3: - Identical to the previous example except that
parenthesis are added for additional clarity.

%v [1 2 %vd(3 4)]

Example 4: - Specifies that the node numbers are to be treated
in the default type fashion for the particular model.  If this model
had “v” default-port type, then this notation would represent
four single-ended voltage connections.

[1 2 3 4]

Example 5: - Normally the Table model uses a voltage input
and a voltage output. Using the syntax below the table model
would take an input voltage at node 1 and output the current
between nodes 2 to 3.

A2 1 %id(2 3) Table
.Model Table pwl(xy_array=...)
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Example 6: - Normally the limiter model uses a voltage input
and a voltage output. Using the syntax below, the limiter model
would take the current flowing through the source named VCC
and output a differential voltage across nodes 2 to 3.

A2 %vnam(VCC) %vd(2 3) Limiter
.Model Limiter limit(gain=...)

NULL Connections
The literal string “null”, when included in a node list, is interpreted
as no connection at that input to the model. “Null” is only allowed
if the Null_Allowed value in the Port Table is “yes”. “Null” is not
allowed as the name of a model’s input or output if the model
only has one input or one output. Also, “null” should only be
used to indicate a missing connection for a code model; use on
other ISSPICE4 components is not interpreted as a missing
connection, but will be interpreted as a node name. An example
of the use of the null would be:

A1 1 2 NULL NULL 3 4 DFF
* data clk nset nreset out nout
.MODEL DFF d_dff (...)

With the null key word added, connections to the nset and
nreset pins of the D flip flop are not required. This feature is
useful when setting up alternate configurations of code models
in subcircuit macro models.

Inverting Digital Nodes
The tilde, “~”,  when added to a digital node name, specifies that
the logical value of that node is inverted prior to being passed
to the code model. This allows for simple inversion of input and
output polarities of a digital model in order to handle logically
equivalent cases and others that frequently arise in digital
system design. The following example defines a NAND gate,
one input of which is inverted:

A1 [~1 2] 3 Nand2
.Model Nand2 d_nand (rise_delay=1n...)
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Extended Syntax

Introduction

By extending the normal SPICE syntax, several new capabilities
have been added to the standard IsSpice4 capabilities. These
include the ability to:

• Call models and subcircuits from library files
• Pass parameters to the main circuit and to subcircuits
• Define and substitute expressions for keywords
• Perform statistical yield analysis
• Sweep component and parameter values
• Optimize component and parameter values based on

objective functions.

These syntax extensions are made compatible with IsSpice4
and other Berkeley compatible SPICE versions by processing
the input netlist through a series of preprocessors. These
preprocessors are; INCLUDE, DEFINE, PARAM, OPT and
MONTE. The MONTE and OPT programs, which are used for
defining component and parameter tolerances for performing
a Monte Carlo analysis and for performing parameter sweeps
and optimizations, will be covered in detail in a later chapter.
Most of these syntax extensions are handled automatically by
the ICAPS program and you do not need to be concerned with
their individual operation; only the syntax extensions.
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The INCLUDE function searches stored model library files
(ASCII) for all subcircuits and device models that are not
already in your input netlist. The appropriate models and
subcircuits are automatically appended to the IsSpice4 netlist,
allowing you to perform circuit simulation without having to
worry about entering complicated model statements or
debugging subcircuit models and complex circuit hierarchies.
Nested subcircuits and models are allowed. A simple open
architecture library structure has been setup to facilitate
maintenance and the addition of user-defined IsSpice4 models.
INCLUDE can also be used to insert an entire file into your
netlist.

DEFINE

The DEFINE function allows complicated expressions and
statements to be defined by single keywords. These keywords
can then be used throughout the netlist to decrease typing time
and ease circuit debugging. Define statements may be placed
anywhere in the netlist and will cause user-defined expressions
to be substituted for keywords.

PARAM

The PARAM function is used to pass parameters into the main
circuit and to subcircuits. They may then be used as-is or
inserted into mathematical expressions. The mathematical
expressions will then be evaluated using the passed parameters
and replaced with a resultant value.

Error checking performed by these three preprocessors is only
relative to the extended syntax. IsSpice4 will still error check the
circuit topology and syntax.

INTRODUCTION
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Parameter Passing

There are several ways to model electronic components for use
with the SPICE circuit simulation program. Each has several
advantages and disadvantages. Intusoft has pioneered a
number of different modeling techniques, enabling the SPICE
user to have the maximum flexibility and power when modeling
components. This section describes one of those modeling
techniques, a technique called Parameter Passing.

Many electronic devices can be represented through the use of
equations that are based on known or measured values. It
would be helpful if these equations could be incorporated into
a SPICE model and the model's behavior controlled by supplying
the dependent variables. This is exactly what Parameter Passing
accomplishes.

Parameters can be passed from a .PARAM statement to the
main circuit or to subcircuits via the X subcircuit call line.
Parameters can also be passed directly from a subcircuit call
line (X line) into a subcircuit. In both cases, parameters passed
into a subcircuit can be further passed to another subcircuit
down the hierarchy. Parameters can be used alone or as part
of an expression.

Example, Parameter Passing To The Main Circuit:
.PARAM T1=1U T2=5U
V1 1 0 Pulse 0 1 0 {T1} {2*T1} {T2} {3*T2}

After parameters are passed and evaluated
V1 1 0 Pulse 0 1 0 1U 2U 5U 15U
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Example, Parameter Passing To Subcircuits:
X1 1 2 3 4 XFMR {RATIO=3}

Subcircuit syntax before evaluation
.SUBCKT XFMR 1 2 3 4
RP 1 2 1MEG
E1 5 4 1 2 {RATIO} ; parameterized expression in curly braces
F1 1 2 VM {RATIO * 2}
RS 6 3 1U
VM 5 6
.ENDS

Subcircuit after parameters are passed and evaluated
.SUBCKT XFMR 1 2 3 4
RP 1 2 1MEG
E1 5 4 1 2  3
F1 1 2 VM  6
RS 6 3 1U
VM 5 6
.ENDS

In the example, you can see that the subcircuit model for the
transformer, XFMR, can represent many different transformers
by merely changing the value of RATIO. Therefore, it is not
necessary to construct a different subcircuit for every turns
ratio. The turns ratio can be set at runtime and the PARAM
function will take care of passing the parameter and generating
calculating the correct values.

Parameter passing can be turned off by un-checking Param
setting in Advanced Setup Options Dialogs. This option is
available in Standard, Monte, Optimize, and Sweep Dialogs.
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The Standard (Std.) Dialog contains two check boxes; one for
Include (including models/subcircuits from libraries) and one
for Param (Parameter Passing).

When checked, the Param function will run prior to any simulation
passing any parameter lists to the subcircuits and constructing
the proper netlist.

.PARAM Syntax

Format: .PARAM name1 = value1 ... namen = valuen
.PARAM name1 = { expression1 } ...
+ namen = { expressionn }

Examples:
.PARAM VCC = 12V, VEE = -12V

.PARAM  Freq=10K, Period={1/FREQ}, TRISE = {period/100}

.PARAM  PI = 3.14159, TWO_PI = {2 * 3.14159}

.PARAM  TEST = 1, Phase = 90

.PARAM  K1 = {10 * Sin(Test) / 1 + TEST/180}

.PARAM  K2 = {TEST < 1 ? PI : Exp(Test^2) * 5K}

PARAM Expressions
Expression Evaluates to
{TEST} 1 with TEST = 1
{TEST/100} .001 with TEST = 1
{TEST + 1K * TEST} 1001 with TEST = 1
{TEST > 0 ? 1K : 0} 1k with TEST greater than 0, else = 0

The .PARAM statement defines the value of a parameter. A
parameter name can be used in place of most numeric values
in the circuit description or passed into a subcircuit. Parameters
can be constants, or expressions involving other parameters.
Param expressions may also take on the same form and
features of analog behavioral element expressions including
In-Line Equations and If-Then-Else statements.

B element
expressions are
detailed in
Chapter 8.
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Name cannot begin with a number. The parameter values must
be either constants or expressions. Curly braces are optional
for constants or single parameters, but mandatory for all
expressions. Expression can contain constants, parameters,
or mathematical operators similar to the B element. The .PARAM
statements are order independent but parameter values must
be completely defined such that all expressions can be evaluated
to a resultant numeric value. A .PARAM statement can be used
inside a subcircuit definition to establish local subcircuit
parameters.

Parameters can be values or expressions. Parameter evaluation
is not order dependent. However, all values must be defined for
all expressions. Parameters and parameterized equations can
be used in just about any facet of the design including but not
limited to: all numeric element properties (including transmission
lines and polynomials), analysis statements (.AC, Tran, ICL),
and independent sources (PWL, etc.).

Note: The IsSpice4 parameter passing syntax is compatible
with the PSpice PARAMS:, .PARAM, and parameterized
expression syntax.

PARAM Rules and Limitations

The PARAM function evaluates expressions in the main circuit
or in subcircuits using .PARAM statement variables, passed
parameters or default parameters. Expressions may be as
complex or as simple as desired. Several rules follow;

• Parameters defined in the main circuit file are applied to all
subcircuits. Parameters defined in a subcircuit apply only
within the subcircuit definition. Passed parameters override
all other parameters of the same name.

• Parameters on the X subcircuit call line override parameter
defaults on the .SUBCKT line. .SUBCKT line parameters
override .PARAM values. .PARAM values override if no X
line or .SUBCKT line parameters exist.
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• The standard evaluation hierarchy is used, that is, items in
parentheses are evaluated first, followed by ̂ , /, *, -, and +.
The resulting value is inserted using engineering notation
with 5 digit precision; for example, 1.3257MEG.

• Unlike IsSpice4, spaces are ignored. They are not used as
delimiters within an expression.

• Recursive parameter values are not allowed, for example
.Param N = N+1.

• You may pass unused parameters, however, each
parameter that is used within an expression must be
assigned a value or have a default value.

• Parameters passed into subcircuits must be accounted for
with .PARAM statement(s), put on the subcircuit call line in
curly braces or appear in the subcircuit’s default listings.

• Expressions to be evaluated in the .PARAM statements, in
a part’s property field, or in  a subcircuit listing must also be
placed inside curly braces.

• Default parameters are placed on the .SUBCKT definition
line. All of the parameters should have defaults. If a default
value is not available you can use “???” as a default.

• Parameters are available only within the subcircuit definition
in which they appear. If a .PARAM is defined in the main
netlist it is available in all subcircuits.

• Passed parameters will take precedence over default
parameters.

Error checking
PARAM provides error checking that is limited to parameter
evaluation problems. Error messages are displayed on the
screen, and in some cases are inserted in the .CKT file.
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Parameterized Expressions

Parameters or Expressions using parameters must appear
within curly braces “ { } “in order to be evaluated. For example;

.Subckt sub 1 2 PARAMS: Rval=1
Rval 1 2 {Rval}
.ends

In the above subcircuit the variable Rval within the curly braces
will be substituted with a value of 1. The reference designator
will be unaffected.

.Subckt sub 1 2 PARAMS: PARAM1=2u
X1 1 2 3 NextSub PARAMS: VAR1 = PARAM1
.ENDS

In the above subcircuit, the variable PARAM1 within the curly
braces will be substituted with 2u. The parameter PARAM1 for
subcircuit NextSub will not be modified. Likewise,

.Subckt sub 1 2 PARAMS: PARAM1=2u
X1 1 2 3 NextSub {VAR1 = PARAM1}
.ENDS

should produce the same results.

Local subcircuit parameters (PARAMS: or .PARAM)
supersede global parameters (.PARAM parameters defined
in the main netlist) of the same name.

Expressions in the main circuit are treated the same as
expressions in subcircuits. Expressions can take the form of a
mathematical equation or an If-Then-Else expression and can
contain parameters, algebraic operators, a number of predefined
math functions as described in the B element syntax.
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Main Circuit Expression Examples;
R2 1 0 {Rnom/2}
C3 2 0 {V*psch*psch/beta} ic={p0/psch}
.MODEL Diode D IS={V1-I1/(V2-I2)} BV={Vmax*1.5}

Where Rnom, V, psch, and beta are defined in a .PARAM
statement.

In R, L, C, and B elements parameterized expressions can be
used inside of the behavioral equations. This allows you to mix
parameters with circuit quantities like voltages, currents, and
device power dissipations. For example;

R1 1 0 R= {p0-pvac} * ({vtot}-v(100)^{gamma})
B1 1 0 V = {Tr}*v(tm1) + {Ts-Tr}*v(tm2)

Note the use of the R=, C= etc., when an equation is utilized that
contains a circuit/simulation dependent quantity.

Entering .PARAM Statements

.PARAM statements can be entered in the Simulation Setup
dialog in the User Statements area or in the Parameters
Advanced Setup Options in the ICAPS Simulation control
dialog as shown below. All statements entered into these
dialogs will appear in the IsSpice4 netlist.
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 To enter a parameterized expression in a numeric property
field

• Click in the desired field.

• Enter the expression. Make sure the proper syntax is used
and that you place the curly braces properly around
parameters and expressions.

Normally, any Properties field that accepts a numeric value
(part value, model parameter) can except a parameterized
expression.

Note: For this example, the Test and PI parameters must be
defined in a .PARAM statement. The is done in the Parameters
Dialog. The Parameters Dialog is accessed from the ACTIONS
menu ICAPS Simulation Control dialog under the Advanced
Setup Options section.

ENTERING PARAMETERIZED EXPRESSIONS
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Passing Parameters To Subcircuits

Subcircuit calling statement syntax:

Xname N1 N2 ... N# subname
+ {P1=val1 or expr1 ... Pj=valj or exprn}

where P1 through Pj are parameters passed to the subcircuit.

There are two ways to pass parameters into a subcircuit.

a) Parameters may be defined with a .PARAM statement
either in the main circuit (ICAPS Simulation Control dialog
Parameters Dialog) or inside the .SUBCKT netlist. If .PARAM
statements are located in both places, the .PARAM
statement in the subcircuit netlist takes precedence.

b) By stating the parameters on the subcircuit call line (X line).

The following forms are all valid.

x1 1 2 3 Subname {var1=expr var2=val2 … varn = valn }

x1 1 2 3 Subname {var1=val1 var2=expr …
+ varn = valn}

x1 1 2 3 Subname
+ {var1=val1 var2=val2 … varn = valn }

x1 1 2 3 Subname PARAMS: var1=val1 … varn = valn

x1 1 2 3 Subname PARAMS: var1=val1 var2=val2 …
+ varn = expr

x1 1 2 3 Subname
+ PARAMS: var1=val1 var2=expr… varn = valn

Note: A parameter can be a single parameter or a parameterized
expression. However, the parameters must be previously
defined in a .PARAM statement or in the subcircuit that the
subcircuit call line is used in, so that a value can be passed to
the subcircuit.
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Parameters can be passed through multiple levels of a
subcircuit’s hierarchy. For example,

.PARAM Varmain = 1, Varmain2=1

.SUBCKT Subname 1 2 3
x1 1 2 3 Subname2 {var1=varmain }
.ENDS

.SUBCKT Subname2 1 2 3
x1 1 2 3 Subname3 {var2=var1 var3=varmain2}
.ENDS

Any number of variables can be accommodated. .PARAM
expressions are evaluated before the passing function is called
if possible. Any number of continuation lines can be used.

To enter a value for a passed parameter using SpiceNet

• Click in the desired field in the subcircuit’s properties
dialog.

• Enter the value. Select Apply or OK.

??? indicates that a value must entered. The default parameter
value will be listed next to the parameter if one is available.

Default Subcircuit Parameters

Default subcircuit parameters can be predefined on the subcircuit
definition line. If a value is passed in by the calling X line, it will
override the default value. Defaults can appear in curly braces
on the .Subckt line or after the “PARAMS:” keyword.

Syntax: .SUBCKT subname N1 ... N#  {DP1=val1 ... DPj=valj}
.SUBCKT subname N1 ... N#  {DP1=expr}

where D1 through Dj are default parameters, val# is a valid
SPICE number, and expr is a valid expression. Curly braces
around an expression in the default list are optional.
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Example: .SUBCKT XFMR 1 2 3 4 {RATIO=1}

SpiceNet Notes: If “???” (3 question marks) are used as
a default parameter, then 3 question marks will appear in
the part’s properties dialog in SpiceNet and the user will be
forced to enter a value before the part can be simulated.

It is also important that each parameter be represented by
a default value or set of 3 question marks. SpiceNet uses
the defaults to compile a list of the available parameters for
the part’s properties dialog. If a parameter is not represented
in the default list it will not be shown in the properties dialog.

Below are some examples of different syntax variations:

.Subckt Subname 1 2 3 {var1=val1 var2=expr … varn=valn}

.Subckt Subname 1 2 3 {var1=??? var2=val2 …
+ varn=valn}

.Subckt Subname 1 2 3
+ {var1=val1 var2=val2 … varn=valn}

.Subckt Subname 1 2 3
+ {var1=val1 var2=val2 …
+ varn=???}

.Subckt Subname 1 2 3 PARAMS: var1={expr} var2=??? …
+ varn=valn

.Subckt Subname 1 2 3 PARAMS: var1=val1 var2=val2 …
+ varn=valn

.Subckt Subname 1 2 3
+ PARAMS: var1=expr var2={expr} … varn=valn

.Subckt Subname 1 2 3
+ PARAMS: var1=val1 var2=val2 …
+ varn=valn

Expressions
used in
conjunction with
the PARAMS:
keyword must
be surrounded
by curly braces.
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Parameter Passing Example

As an example, we will consider a semiconductor resistor
subcircuit model. The subcircuit call is;

X1  1  2  RSUB {WIDTH=10U RPERSQ=1KOHMS}

The subcircuit contains;

.SUBCKT  RSUB 1  2 {WIDTH=2U}
R1  1  2  {RPERSQ * (WIDTH^2)/1E-12}
.ENDS

The subcircuit call, X1, calls the subcircuit and passes two
parameters, WIDTH and RPERSQ, into the subcircuit. The
resistance value R1 will be calculated based on the equation
that is shown next. After running a simulation, all of the
extended syntax is transformed into IsSpice4 syntax by
evaluating the expression(s) and then replacing each one with
a value. For example;

X1  1  2  RSUB#0
*{WIDTH=10U RPERSQ=1KOHMS}

.SUBCKT  RSUB#0 1  2
R1  1  2  100.00K
.ENDS

The passed parameters are left in the final IsSpice4 input file on
a comment line below the subcircuit call. After a simulation is
run, the subcircuit names will have a sharp sign and a number
appended to them in order to make them unique.

If two RSUBs are called with different sets of parameters, then
two different subcircuit representations will be created
automatically. For example:

X1 1  2 RSUB {WIDTH=50U RPERSQ=100OHMS}
X2 3 4  RSUB {WIDTH=10U RPERSQ=1KOHMS}

Netlist After
PARAM

Netlist Before
PARAM
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will produce:

X1 1 2  RSUB#0
*{WIDTH=50U RPERSQ=100OHMS}
X2 3 4  RSUB#1
*{WIDTH=10U RPERSQ=1KOHMS}

.SUBCKT RSUB#0  1  2
R1 1 2 250.00K
.ENDS
.SUBCKT RSUB#1  1  2
R1 1 2 100.00K
.ENDS

Each subcircuit call with a different parameter list will
automatically create a new subcircuit. If all subcircuit calls use
the same parameter list, only one subcircuit will be generated
for all calls.
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The “/” causes
the define string
to apply to the
entire netlist
rather than for
only one
include pass,
resulting in a
“global define”.

DEFINE

DEFINE allows a text string to be replaced with another text
string within the netlist. This function can be used to easily
change model names that are used numerous times, or to
easily shorten long phrases.

Syntax:
*DEFINE variable name = substitute text string
*DEFINE variable name = /substitute text string

Example:
*DEFINE DUT=MPSA42

In the example, every occurrence of the string “DUT” will be
replaced by its substitute text string “MPSA42”. The expression
“substitute text string” may contain any characters. The
substituted text is comprised of all the characters following the
“=” equals sign up until a carriage return is encountered.

*DEFINE statements are erased as they are performed, in
order to eliminate duplicate substitutions, unless a forward
slash is placed before the substitute string. The Define keywords
are erased by changing the “D” in the *DEFINE to a lower case
“d”. If there are *DEFINE statements inside any subcircuits, the
DEFINE statements in the deepest subcircuits are processed
and removed first.

The IsSpice4 comment delimiter, *, is used to make the
INCLUDE and DEFINE commands compatible with IsSpice4;
that is, it remains in the netlist, but is ignored when an IsSpice4
analysis is run.

The DEFINE function is run whenever the INCLUDE program
is run.
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Define is part of
the ICAPS
program.

DEFINE Rules and Limitations

• DEFINE statements are only processed in a forward
direction. Define statements are usually placed at the
beginning of the netlist in order to apply them to all
subsequent entries.

• Be careful of what you are substituting. The variable name
must be unique so that inadvertent substitutions are avoided.

• The variable name cannot start with a number.

• The DEFINE statement cannot longer than one line long.

• All characters before the “=” must be found.

• All characters following the “=” sign, the substitution string,
will be replaced.
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Define Syntax

Before DEFINE

After DEFINE

DEFINE Example

To use a *DEFINE statement;

• Place a *DEFINE statement in the input netlist.

Example:

*DEFINE WIDTH=5U

• Place the word WIDTH in the netlist.

Example:

M1 1 2 3 4 WIDTH
M2 7 8 9 10 WIDTH
M20 34 45 23 12 WIDTH

• Select the Simulation Control... function from the ICAPS
ACTIONS menu. Make sure the “Include Libraries” option
is checked in the dialog.

• Perform a simulation.

The DEFINE function will be run automatically before the
INCLUDE function is run. After the netlist preprocessing is
finished, the netlist will be submitted to IsSpice4.

M1 1 2 3 4 5U
M2 7 8 9 10 5U
M20 34 45 23 12 5U

The defined string WIDTH was substituted with the definition
that was given in the *DEFINE statement.
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INCLUDE

The *INCLUDE statement is used to access models or
subcircuits that are located in a library file, or insert an entire file
into the netlist. In general, the schematic program will include
the subcircuits and models for all top-level components in the
SPICE netlist it produces. Additional INCLUDE statements are
normally only required when other nested subcircuits and
models must be included. In this case a *INCLUDE statement
should be inserted into the subcircuit entry after the .ENDS line.

When a simulation is run, the INCLUDE function searches the
referenced library (extension .LIB) and places the appropriate
models and subcircuits into the netlist automatically. If the
extension is anything but .LIB, the entire contents of the file will
be inserted just after the *INCLUDE line. The INCLUDE feature
is only active when the “Include Libraries” option is checked in
the ICAPS Simulation Control Advanced dialog.

Syntax: *INCLUDE filename.lib
*INCLUDE filename.xxx

Example: *INCLUDE USER.LIB

Note: The following items are necessary for INCLUDE to operate;

• The proper call statement for the device must be used. (i.e.
A, C, D, J, M, O, Q, R, S, W, etc. or subcircuit, X)

• A *INCLUDE statement must be present and must point to
the library that contains the called devices.

• The “Include Libraries” option (default on) must be activated.

See Working
with Model
Libraries or the
on-line help, for
more info on
constructing
model library
files.

Note: Note: If you find that you specify the same simulator
options over and over, then you can do the following procedure.

Bring up IsSpice4 Simulation Setup dialog. Uncheck all analysis
except for “Simulator Options...” Press “View All Controls...”
button then copy and paste all .options statements into a text
file, i.e., myoptions.txt. In the User Statement window add either

(1) *INCLUDE myoptions.txt

(2) *INCLUDE c:\spice8\myoptions.txt.

If you don't specify an absolute path, then the .txt file must be
located in the same folder as the DWG file.
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INCLUDE EXAMPLE

Model Call

Netlist Before
INCLUDE

Netlist After
INCLUDE

INCLUDE Example

As an example, consider the following call to a 2N2222 BJT.

Q1 10 15 20 QN2222

The model name, QN2222, is the name of the library entry that
contains the description of the transistor. The model is located
in the library BJTN.LIB.

The *INCLUDE BJTN.LIB statement would retrieve the model
from the BJTN library;

SAMPLE NETLIST
*INCLUDE BJTN.LIB
.DC VCE 0 15 .5 IB 100U 1M 100U
.PRINT DC I(VC)
IB 0 1
Q1 2 1 0 QN2222
VC 3 2
VCE 3 0
.END

When the simulation is run, the model library BJTN.LIB will be
searched, for the QN2222 model statement, which will be
inserted into the final netlist.

SAMPLE NETLIST
*INCLUDE BJTN.LIB
.MODEL QN2222 NPN (IS=15.2F NF=1 BF=105 VAF=98.5 IKF=.5
+ ISE=8.2P NE=2 BR=4 NR=1 VAR=20 IKR=.225 RE=.373 RB=1.49
+ RC=.149 XTB=1.5 CJE=35.5P CJC=12.2P TF=500P TR=85N)
* Motorola 30 Volt .8 Amp 300 MHz SiNPN Transistor
.DC VCE 0 15 .5 IB 100U 1M 100U
.PRINT DC I(VC)
IB 0 1
Q1 2 1 0 QN2222
VC 3 2
VCE 3 0
.END

Important Note: The Include operation is normally completed
AUTOMATICALLY by the schematic entry program. You do not
have to type *INCLUDE statements.
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INCLUDE Rules and Limitations

When INCLUDE is run, the netlist is loaded and the specified
libraries are searched for unresolved subcircuit or model
references in the order in which they appear in the netlist. Each
library will be searched repeatedly until no additional references
can be resolved in that library. The process is then repeated for
succeeding libraries. The program runs until a pass is made
with no unresolved references.

Libraries may cause additional unresolved references to occur
if your subcircuits call other subcircuits or models. It is best to
resolve those references within the same library.

The following guidelines should be observed when using the
Include feature:

• A *INCLUDE statement is REQUIRED if your subcircuit
calls other subcircuits or models.

• A *INCLUDE statement must exist in order to extract a
model from a library.

• The library (.LIB) file must conform to the format as discussed
later in this chapter.

• *INCLUDE statements may be placed within subcircuits,
but all nested subcircuits should be located in the same
library.

• The subcircuit or model is inserted into the netlist, starting
at the “.SUBCKT” or “.MODEL” line, and encompasses all
text prior to the next row of five asterisks.

• Only one INCLUDE statement is required for each library.

• The “Include Libraries” option in the ICAPS Simulation
Control Advanced dialog must be activated.
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Subcircuit and Model Hierarchy

IsSpice4 subcircuits and models can be used within a circuit
hierarchy. The rules by which subcircuits and models are found
when they are called from your source netlist allow subcircuits
to contain private subcircuit and model names. That is, a model
or subcircuit contained within a hierarchy is exclusive to that
hierarchy and cannot be used by another. This concept allows
you to build complex circuits without having to worry about
using the same names in different subcircuits.

When a subcircuit is called, IsSpice4 will first search within the
calling subcircuit for any subcircuit reference, then it will search
back one level, if any, to the calling subcircuit and then through
other subcircuits until it reaches the location where the original
call was made. The same rule is applied to model statements.
You can look at the hierarchy as a tree with branches, similar
to a DOS directory tree.

The subcircuit search extends to other subcircuits on the same
branch, but not for models or subcircuits that are within other
subcircuits on the same branch. When a subcircuit calls another
subcircuit, the references (models, subcircuits and elements)
in the called subcircuit are private and therefore cannot be
referenced by the calling circuit.

The concept of a hierarchy allows you to reuse a model or
subcircuit for different parts of your circuit, providing accessibility
problems have been eliminated. IsSpice4 will internally flatten
the hierarchy so that there is a separate entry for each instance
of a device.

Libraries can contain unresolved references, for example, a
subcircuit could reference a model or another subcircuit that is
in a separate library. It is best to resolve these nested groupings
within the library in order to simplify debugging and speed the
processing by INCLUDE.
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Main Circuit Netlist

.MODEL D

.SUBCKT#1

.MODEL B

.ENDS#1

.SUBCKT#2

.SUBCKT#3

.MODEL C

.ENDS#3

Model A is private to Subcircuit#2
Models B and D are accessible
Model C is not accessible

Only models B and D are accessible to
Subcircuit #1

Only models C and D are accessible to
subcircuit #3

Only model D is accessible to the main circuit

.MODEL A

.ENDS#2

  .END
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SUBCIRCUIT AND MODEL HIERARCHY
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Introduction

This chapter deals with the process of performing Monte Carlo
Analyses, Circuit Optimization, Parameter Sweeping and
Simulation templates in general. Examples are given in order
to explain these analyses.

Monte Carlo analysis is the evaluation of circuit performance
based on the statistical variations of parameter tolerances.
Monte Carlo analysis is vital to predicting how a circuit, whose
component values vary in the real world, will perform when it is
actually fabricated.

Monte Carlo analysis can be run using either of two methods. The
first method is selected using the “Monte Carlo” radio button in
the “Simulation Control Dialog.” To get meaningful information
from this method, you must define one, or a series of
measurements, before running Monte Carlo . This method is
mainly used to obtain the mean and 3-sigma tolerances available
for setting measurement pass-fail limits. Pass-fail limits are
displayed in the “Measurement Results” dialog after simulation,
and they are setup using the “Set Measurements Limits” dialog.
See the Getting Started manual, tutorials #6, #7, and #8 for a
detailed description of these features.

The second Monte Carlo simulation method employs simulation
templates and is run by first selecting the MONTE item in the
“Simulation Template” list box. You can elect to make
measurements either before of after running the simulation. If
you define electrical measurements before running the simulation,
then you can set pass-fail test limits in Simulation Control’s
“Results” dialog. The simulation template will run IsSpice just
one time, while varying tolerances and repeating simulations and
collecting data in a series of IsSpice4 plots. When completed,
the Monte button will be enabled in IntuScope’s “Add Waveform”
dialog. Tutorial #6 in the Getting Started manual shows how the
data can be viewed. This Monte Carlo simulation technique is
useful for obtaining graphical data in IntuScope for the statistical
runs, a feature not available with the first Monte Carlo method.

Extended Analysis

The Monte
Carlo,
Optimization,
Parameter
Sweeping and
Failure
analyses are
NOT available
in ICAP/4Rx.
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The diagram shows the general program flow for Monte Carlo analysis using Method #1 ICL scripted
measurements.

This method uses an ICL script to analyze the output from each case run. The results are generated and
sent to the schematic for display in the Results Dialog.

Circuit Optimization provides the ability to optimize multiple
parameters for virtually any single circuit objective function.
Any IsSpice4 parameter, including component and model
parameter values, can be varied in an attempt to minimize an
user-defined objective function.

Parameter Sweeping is similar to a DC sweep but you are able
to sweep any two circuit parameter instead of just DC voltages.
If you just want to sweep only one primitive part like resistor,
capacitor, inductors, voltage/current source, or even the global
circuit temperature then you can use the Alter tool (from SpiceNet)
to create a curve family. With Parameter Sweeping, a component
value or parameter is stepped and an IsSpice4 simulation is
performed for each value. The simulation results from each run are
available for plotting, so you can perform complex manipulations
on the output data (rise/fall time, propagation delay, etc.), and plot
any measured value against the parameter that was swept.

Simulation Templates provide the ability to perform various
analyses, and process the simulation results.  These were
invented by Intusoft to integrate ICL scripts with the netlist
building function in SpiceNet. Simulation templates eliminate
repetitive tasks and save a significant amount of time.
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Tolerance Distribution Notes

Statistical analysis is a convenient although brute-force method
of finding the envelope of a circuit's performance. Analysis
performed using statistical simulation has become known as
Monte Carlo analysis. The advantage that Monte Carlo analysis
has over other estimation techniques is that it is not affected by
non-linearity or local minimums that confound sensitivity or
envelope-based simulations.  Moreover, Monte Carlo analysis
can be performed in a parallel fashion in order to achieve  processing
speed increase.

In order to perform statistical analysis, a repeatable method for
generating random numbers is used. The need for repeatability
arises to enable simulation lots/case trials to be performed using
parallel computing techniques.

The diagram shows the general program flow for Monte Carlo analysis using Method #2 Simulation
Templates.

This method is used if you want to create a curve family or use IntuScope to process the simulation results
of each case.

Tolerances
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The random number generators that Intusoft has developed for its
IsSpice4 use an integer-based system. The Intusoft generators
use a software implementation of tapped shift register with
"polynomial" feedback to generate a series of numbers that
repeats after 2^n -1 terms, where n is the number of bits. There are
two pieces of information that determine the sequence of numbers;
these are the seed number, or starting point, and the generating
polynomial. Given a generating polynomial, these generators
produce a random sequence that has very low cross correlation;
that is, the sum of products which start with a different seed show
a very small cross correlation.  Furthermore, there's no correlation
between random sequences made using different generating
polynomials. For purposes of this discussion we will define random
generators that produce uncorrected sequences as orthogonal.

Monte Carlo analysis is commonly performed using a lot/case
approach. This allows components within the lot to be matched
more closely than those between different lots. This characteristic
is used widely in integrated circuits and systems to achieve
precision that couldn't otherwise be achieved. To build random
generators, it is then necessary to initialize the lot and case
generators for each type of part so that the subsequent pattern will
be orthogonal. The basic trick is to advance a generator from a
known seed by the desired number of lots or cases and then to
make a new orthogonal generator using the resultant random
number to select the new generating polynomial. Then each lot
generator and each case generator is orthogonal and the system
of generators for any given lot or case can be reproduced by any
other platform performing the same simulation.

Given a shifting word length, not all generating polynomials will
produce a maximum length sequence. Those that produce a
2^n - 1 sequence are then mapped from the n bit word into a smaller
space. If the same polynomial generator is used more than once,
than an unused generator will be selected to prevent inadvertent
correlation.

To handle different distribution functions, the distribution model
used for lot/case statistics also allows three distribution functions.

TOLERANCE  NOTES
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They are normal or Gaussian, binary, and uniform.

The tolerance for each of these has a meaning shown in the
table below.:

The last entry, 3 sigma/Tol is what is reported in the Results
dialog.

The value used for Tol is different for each distribution. For linear
combinations results tend to be normally distributed with
dependence on the one sigma or RMS of the selected distribution.
For linear cases, the RMS of the distributions to correspond to
the results of the our RSS analysis.  When an extreme value
analysis (EVA) warns that the sign of sensitivity is different at the
extremes, it is better to rely on Monte Carlo results instead of
EVA or RSS.

Working With Tolerance

Distribution Standard Deviation Comment
                         as a function of TOL

Normal Tol/3 Tol is 3 Sigma
Binary Tol Result is +Tol or -Tol
Uniform 2*Tol/sqrt(12) Equal probability from -Tol to +Tol

Normal Binary Uniform
1 sigma Tol/3 Tol 2*Tol/sqrt(12)
1 sigma/Tol .333 1.0 .577
3 sigma/Tol 1 3 1.73

Tolerances can be entered as a percent (e.g. 10%) or as an
absolute value (e.g. .314). Tolerances define the 3 sigma points
for the specified distribution (default Gaussian). You can specify
both lot and case tolerances using the .TOL statement. If you do
then the simulator will compute a lot tolerance (once for each lot)
and the sum (the case tolerance for each simulation case).

Lot and case tolerances are set in the Part Properties dialog for
a specific device. You can create an indirect Lot/Case tolerance
reference name in the ”Tolerance Definitions” dialog. This is
brought up by clicking on the tolerance button located in the
Advance Setup Options  section of the Simulation Control dialog.
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Example of the tolerance format:

IsSpice4 Statement ±3 sigma value
R1  1  2  1K  TOL=10%  .900K to 1.1K
R2  3  4  .01  TOL=.001  .009 to .011

.MODEL TRAN NPN (BF=100 TOL=10% ...)
gives BF between 90 and 110

Note: The distinction between a percentage tolerance and an
absolute value tolerance is very important. An error in the
declaration of a tolerance will lead to unexpected results.

To place a tolerance on a device or model parameter:

• Double click on the part in the schematic to open its
Properties dialog. Click on the Tolerance/Sweep/Optimize
tab toward the top.

• Click on the Lot or Case field for the desired parameter.

• Enter a tolerance. Don’t forget the required % character if
the tolerance is a percentage. Select OK.

To create an indirect Lot/Case tolerance name:

• Open the ICAPS Simulation Control dialog from the Actions
menu in the schematic. Click the Tolerance box toward the
bottom.

• Enter “.Tol name Lot=#1% Case=#2%” into the text field.
Here, Name is tolerance reference name, and #1 and #2 are
the Lot and Case percentages.

• Click the Add button. An example is shown.

• Click OK.

TOLERANCE  NOTES

Tolerances are
evaluated when
each Monte
Carlo analysis
case is
performed.
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To use the indirect Lot/Case tolerance name:

• Double-click on a part. Select the Tolerance/Sweep/
Optimize tab.

• Click on the Case field for the desired parameter.

• Enter the tolerance name. Click OK. An example is shown
next.

Tolerances
correspond to
the 3 sigma
(± 99.87%)
value.
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Subcircuit Parameter Tolerances

In some instances, it may be necessary to place tolerances on
parameters that are passed to subcircuits.

To place a tolerance on a passed subcircuit parameter:

• Double-click on the part, click on the Tolerance/Sweep/
Optimize tab. Select the desired passed parameter and
enter a tolerance.

To place a tolerance on a subcircuit parameter that isn’t
passed-in:

• Double-click on the part. In the Label tab, double-click on
the value field beside the .SUBCKT parameter.

• Enter the desired tolerance value in the Edit Subcircuit
dialog, directly beside the subcircuit parameter value that
you want to tolerance.

SUBCIRCUIT TOLERANCE SETUP

Notice that the
tolerance value
appears here.

Don’t forget the
required %
character.
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Varying Subcircuit Tolerances
It may also be advantageous to make a component into a
subcircuit in order to scale the component tolerances more
easily.

Example:
The partial netlist below shows the subcircuit MIRROR, which
has two resistors that are assigned tolerances. For subcircuit
X1, we will produce a Lot/Dev distribution. For subcircuit X2, we
will simply provide a device tolerance for each resistor value.

Change this:
SAMPLE NETLIST
X1 1 2 MIRROR
X2 5 6 MIRROR
*****
.SUBCKT MIRROR 1 3
R1 1 2 1K
R2 2 3 1K
.ENDS

To this:
.PARAM R1T=1K Tol=10% R2T=1K Tol=5%
.TOL NRES LOT=30% DEV=2%
X1 1 2 3 MIRROR {R1=1K Tol=NRES R2=1K Tol=10%}
X2 5 6 8 MIRROR {R1=R1T R2=R2T }
.SUBCKT MIRROR 1 2 3
R1 1 2 {R1}
R2 5 6 {R2}
.ENDS

In the example, R1 and R2 in X1 will be given a value that is
adjusted by the tolerance before they are passed into the
subcircuit. Each time the mirror subcircuit using these
parameters is called, a different subcircuit representation will
be automatically created with different values for R1 and R2. This
is because the resistors will each have a different value and a
different ratio, both dependent on the statistics. For X2, all of the
R1 and R2 values for all the subcircuits that use the .PARAM
parameters will have the same values.

Components
getting

tolerances

.TOL and TOL=
syntax can be
used together in
the same
circuit, if
necessary. Format to pass

toleranced
parameters
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TOLERANCES

Monte Carlo Using Scripted Measurements: Setting the
Param After Monte switch is not necessary when performing
scripted (non simulation-template) Monte Carlo analysis. All
subcircuit descriptions are given unique statistics.

Tolerance  Value Generation

The default random number generator makes a Gaussian
distribution by summing 12 uniformly distributed random numbers,
a process that tends to produce a Gaussian distribution according
to the Central Limit Theorem of probability theory.

Monte Carlo Analysis (Not Available in ICAP/4Rx)

Performing a Monte Carlo analysis begins by developing a
working circuit description. After making sure that the circuit
topology is correct, component or model parameter value(s) may
be given a tolerance. The tolerance corresponds to the 3 sigma
(± 99.87%) value that the parameter may take on under real world
conditions. During the analysis, parameter values will be
toleranced based on a Gaussian statistical model.

Initially, a standard simulation run is performed. The circuit
simulation is described as standard because all of the component
values will be at their nominal levels. Then you must define what
type of measurements you want to record during the analysis.

The statistical analysis of the circuit is performed by building the
circuit description repeatedly using different parameter values
for the toleranced components or model parameters. Each
circuit is simulated by IsSpice4 and then analyzed by the user-
defined measurements. After all of the circuits have been
simulated, the results can be viewed in the Results dialog,
selected inside the Simulation Control Dialog (if you chose
scripted measurements).
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Performing A Monte Carlo Analysis (ICL Scripted)

The following steps will guide you through the actions necessary
to perform a standard Monte Carlo analysis. The following is a
general explanation.

STEP 1: A Working Circuit

Start ICAPS and obtain a working version of the circuit. Note
that if a particular case does not simulate to completion during
the Monte Carlo analysis, the result will not be used in the final
statistics.

STEP 2: Adding Tolerances

The next step is to place tolerances on the parameters that you
optionally may wish to vary, in lieu of the default variation
ascribed during a scripted Monte Carlo analysis. Any value,
component values, model parameters or parameters passed into
a subcircuit, can have a tolerance. Tolerances are placed in the
Tolerance/Sweep/Optimize tab in the Part Properties Dialog.

STEP 3: Setting Up The Measurements

Before a Monte Carlo analysis can be run, it is recommended that
you decide what measurements to record. These are setup using
the Measurement wizard in the Simulation Control dialog. Most
measurements (i.e., rise time, max, pk-to-pk) are set up with just
a few mouse clicks. You also have the ability to write your own
ICL scripts to make a measurement. (See Chapter 11)

Note: Advanced analysis details are covered  in the schematic’s
on-line help. You can view this by pressing F1 when any Measurement
Wizard dialog is displayed. For non simulation-template Monte
Carlo,  only the mean and 3 sigma value of each measurement will
be calculated, and no waveform data is provided. .
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To setup a Monte Carlo Scripted Measurement

• Select the ICAPS function from SpiceNet’s Actions menu.

• Select the Measurements tab.

• Select the configuration and analysis type you want to add a
measurement to. For example, select Closed Loop, TRAN.

• Click the Add button to add a measurement. This will start
the Measurement Wizard.

• Make sure the proper Simulation, Configuration, Setup and
Method entries are selected. Click Next. The example
screen images show TRAN, Closed loop, TRAN, and Function,
respectively.

Open up sample.DWG in the folder :\spice8\SN\sample2

PREPARING FOR MONTE CARLO
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• Click the Next button to
display the Cursor Wizard
dialog.

The Cursor Wizard dialog allows you to position cursors to
make cursor relative measurements. It starts with the command
“homeCursors,” which sets the cursors at the beginning and end
points of the analysis (x axis: in this case with TRAN selected
as the analysis). For this overview, we will leave the cursors at
the default locations and make a measurement that includes the
entire X axis span.

• Click the Next button to go to the final Wizard dialog.

In this dialog you can select which voltages, currents, and
power dissipations you want to record. The example shows
several voltages.

• Select the waveforms you want to
measure from the Vector List.

• From the drop-down list under
functions, select the type of
measurement you would like to
make on all of the selected
waveforms. You can add as many
different measurements on different
vectors, as desired.

• Select “Finish” when done, then select
the Main tab in  the Simulation Control
dialog.

The pictures to the left show several
voltages selected along with the max
function. The final Measurements
tab settings are shown below it.
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STEP 4:Defining Lots and Cases

To define how many lots and cases to run

• Select the ICAPS function from SpiceNet’s Actions menu.
Select the Main tab on top.

• Click on the “Monte” box located toward the bottom.

• Enter a value in the “Lots” field.

• Enter a value in the “Cases” field,
(i.e., 12). The number of
simulations run is equal to Lots *
Cases.

• Click on the OK button to close
the Advanced Settings dialog.

The Monte Carlo analysis will create the proper number of circuit
instances based on the number of Lots and Cases. For example,
Lots=2 and Cases=4 will cause 8 circuits, each with different
tolerances, to be simulated.

STEP 5: Running a Monte Carlo Simulation

The Monte Carlo analysis is run from the ICAPS Simulation
Control dialog in SpiceNet.

To begin the Monte Carlo Analysis

• Click on the “Monte Carlo” radio button in the Simulation
Control dialog.
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• A dialog will be displayed, asking you if it is OK to perform
the requested number of simulations. Select Yes if the
number is correct.

You will see the Simulation Status as the analysis proceeds.

After the last case is simulated, you will be asked “Do you want
to run a standard reference simulation.” This is a simulation with
all of the parameter values set to their nominal values. Running
this simulation can be useful if you will be setting test limits on
your scripted measurements. If you are just reviewing the
Monte Carlo statistics, you do not have to run the reference
simulation.

• Select Yes or No as desired.

Viewing the Results

The measurements are automatically fed back to the SpiceNet
program for display when the Monte Carlo analysis is finished
(or aborted).

To view the scripted Monte Carlo mean and 3 sigma results

• Go to the ICAPS Simulation Control dialog.

• Select the desired Test Configuration.

• Select the Batch radio button.

The Batch radio button shuts off the IsSpice4
interactive waveform display, thereby
improving simulation performance. The
script checkbox causes all of the scripted
measurements you have set up to be
performed.

• Click on the Simulate Selections button.

The mean and
3 sigma values
are recorded
for each
measurement
vector.
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The other columns, Meter, Pass/Fail, Min, Nominal, Max, are
useful if you have set limits on the measured vector. Please see
the on-line help (press F1 in the Results dialog) for more
information on setting test limits.

You may have to scroll the dialog’s bottom bar to the right, and/or
reduce or increase some of the column widths in order to see the
mean and 3-sigma values. The latter step is done by left-mouse
dragging the desired small vertical bar between any of the title tabs
(i.e., min, max...). The Precision (low left corner) may have to be
increased if readings are taken out to several decimal-point digits.

ANALYZING MONTE CARLO ANALYSIS DATA

• Click the Results button.

• Click one of the measurement names to see its results.

The Results dialog is used for looking at scripted measurement
results. Scripted measurements and the Results dialog can be
used for any analysis. Please see the “Monte Carlo and RSS
Analysis” and “Design Validation and Automated Measurements”
tutorials in the Getting Started book for more information.

For non simulation-template Monte Carlo analysis, there are data
columns for the measured (last simulated) value, mean, and 3
sigma values.
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Optimizer Preparation
Specify objective function ‘ofunc’
•  Bring up ICAPS/Simulation Control...
•  Click on the Measurements tab.
•   Select the Test Configuration you want to optimize and press

the add button.
•  Select the Script Method, give it a name called ‘ofunc’, and

press the next button.

•  Enter the objective function you want to minimize.

Example 1: [You want 5 Volts on Vout]
setcursor 0 150u
setcursor 1 400u
ofunc =(max(Vout - 5) )^2

Example 2: [You want 90 degree phase margins]
setcursor 0 100
setcursor 1 10k
phase = phaseextend(phase(vout)-phase(vin))
ofunc = (min(phase) - 90)^2

It doesn’t matter what you call the script measurement but you
should only have one in that test configuration. We use ‘ofunc’
in our schematic examples. This script will be minimized so
remember to square the equation to ensure that there is a min.

Circuit Optimization ( Not Available in ICAP/4Rx)
The Intusoft Optimizer performs design optimization by trying to
minimize (achieve) a design objective function (i.e., minimize a
voltage, achieve a particular phase margin, etc.). Only circuit
parameters with optimization percent value will be changed by
the optimizer and only by the percent amount you specify. If you
specify 30% on a resistor with an initial value of 1k then the
optimizer will only change its value from 700 Ohms to
1.3KOhms.(30%*1K=300, 1K+300=1.3K and 1K-300=700) Also
this optimize percent is not saved in the .DWG file so you will
need to reenter it if you close the file and re-open it.

Note:Simulation Template Optimize performs 1 pass through the
stepped optimization algorithm, and Optimize2  performs 2 passes.
Choose Optimize2 if you want to optimize multiple parameters.
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The optimization process itself consists of measuring the
objective function for a set of parameter values, and then finding
the parameter value that minimizes (achieves) the objective
function. OPTIMIZE is a single pass version and OPTIMIZE2 is
a 2-pass version. If you are doing single parameter optimization
to select a component value, then OPTIMIZE should work. If
you are doing multi-parameter optimization, use OPTIMIZE2.The
algorithm uses polynomial regression to make a high order curve
fit so that it is possible to find a minimum value in the presence
of local minimum values.

PREPARING FOR OPTIMIZATION

To specify optimize percentage

• In Simulation Control click on the “Optimize” button in the
Advanced Setup Options section.

• Select the RefDes of the part you want to set a optimize
constraint on and press the Edit Part button.

• Enter a percentage value in the optimize column for each
parameter that you want to be optimized.

• Press the Ok button and the Optimize dialog will come up
showing the min and max value. If you set a percent value on a
parameter that is initially 0 or infinity, then it will come up as 0.

Running The Optimizer
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To run the Optimizer
• After you have specified all the parameters that you want to be

optimized, press the Ok button to dismiss the Optimizer
dialog.

• Under Simulation Templates select OPTIMIZE or OPTIMIZE2
and press the simulate selections button.

The circuit optimization will now begin. You will see the analysis
proceed on the screen.

Single and Multi-Parameter Sweeps (Not Available in ICAP/4Rx)

Any single circuit parameter (up to two components) may be
swept through a predefined range, using a symmetrical increment
or decrement value.

One way to prepare a part for a single device-parameter sweep

• Select a SpiceNet schematic drawing.

• Double-click on the part whose parameter will be swept.

• Click on the Tolerance/Sweep/Optimize tab atop.

• Select the desired parameter’s value field, and enter the
name of the variable, rather than a numerical value (e.g.,
“Rvary”), in the “Sweep” column.

VERY IMPORTANT NOTE: the variable_name must NOT be set
to a reference designation. The sweep function directly substitutes
the Value in place of the variable name. If a reference designation
is used, it will be replaced with a number, and the IsSpice4
program will respond with an error.

Centralized method to sweep one or two components

• Select “ICAPS/Simulation Control” from SpiceNet’s “Actions”
pulldown menu.

• Select the “Sweep” function from the “Advanced Setup
Options” box at the bottom.
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“Sweep” dialog box from the Simulation Control dialog.

• Using any schematic, Select R1 from the “Ref Des” dropdown
box shown above. Then, press the “Edit Part” box just above.

• Select the Tolerance/Sweep/Optimize tab atop the “Resistor
Properties” dialog.

• Fill in the sweep variable name “Router” in the “Sweep” field.
Note: if performing a dual (nested) sweep is desired, fill in
an inner variable name in the “Sweep” field too. Press OK.

• Back to the Sweep dialog, enter the desired Outer loop Start,
Stop, and Step values as shown in the pictorial above, then
select the variable name(s) in the “Name” field(s).

• Click on the OK button to dismiss the Sweep dialog.

• Select “Sweep”  in the Simulation Template list.

• Select the desired test configuration in its window above.

• Click on the Simulate Selections button to begin the analysis.

Sweeping two parameters

As mentioned, two parameters may be swept in a “nested” loop
by using the same above procedure.

SINGLE AND MULTI-PARAMETER SWEEPS
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Error Messages and Solutions

For a Monte Carlo, Circuit Optimization, or Parameter Sweep
analysis to run, each case must result in a valid simulation.
The Monte Carlo tolerances, and optimized/swept circuit variables,
must  produce circuits that converge and simulate without errors.
If an error (non-convergence or IsSpice4 syntax error) occurs
during an IsSpice4 simulation, the dialog “Spice aborted” will be
displayed and the analysis will be halted.

If IsSpice4 runs out of memory, the “Spice aborted” dialog will
appear and the analysis will halt.

With a nested loop, the “inner” variable  is stepped through its
entire range, for each incrementally stepped value of the “outer”
variable.

• In the Part Properties dialog, select the Tolerance/Sweep/
Optimize tab.  Again, this can be accessed from the Sweep
dialog’s “Ref Des” pulldown and “Edit Part” box as shown
below. Enter the second desired  name of the variable to be
swept, (e.g. Rinner), in the “Sweep” column. Press OK.

• Back to the Sweep dialog, enter the desired Inner loop Start, Stop,
and Step values. Select the part’s variable name  (e.g. Rinner) in
the Name field. Run the Sweep Simulation Template as before.
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SPICE simulators operate on a netlist and perform a standard
set of simulations; AC, DC, TRAN, etc… By adding a script
language, the results of these simulations can be automatically
post processed - making available measurement results that
correspond closely to real-world test measurements.

Analysis types most useful for design verification are:

·  Sensitivity, including transient analysis
·  Root Summed Square, RSS
·  Extreme Value Analysis, EVA
·  Worst Case by Sensitivity, WCS
·  Standard simulation
·  Monte Carlo
·  Component Sweep
·  Optimization

In theory, each of these analyses can be performed using ICL
scripts; however, the scripts would have to be specialized for
each circuit.

Simulation Templates were invented by Intusoft to integrate
special ICL scripts with the netlist builder in order to create
special analysis types. These address a class of problems
associated with design verification for production and field
compliancy. Simulation Templates control netlist options and
mark insertion points for simulation control directives. These
templates are easily edited by the user to optionally create
custom report formats, and even to modify the analysis based
on the user’s special needs. Extensions to optimization, what-
if, and sneak circuit analysis are possible.

Simulation Templates

SIMULATION TEMPLATES
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Sensitivity Analysis

In this analysis, after running a reference simulation, each device
parameter is perturbed and another analysis is run. For each
measurement vector (i.e., Vout, iR3, etc.), the difference between
the reference and the perturbed result (the sensitivity) is saved.
This results in a number of simulations equal to the number of
device parameters that have tolerances.

As a matter of convention, each tolerance is taken as the 3
sigma value, or 3 standard deviations.  The Sensitivity results
are reported as 3 sigma. The sensitivities for each parameter are
reported for all measured vectors in descending order of magnitude
in the IsSpice4 output file. The sensitivities can be tabulated for
each measured vector or for each parameter.

RSS, Root Summed Square

In this analysis after running a reference simulation, each
parameter is perturbed and another analysis is run. For each
measurement vector, the difference between the reference
and the perturbed result is saved. This results in a number of
simulations equal to the number of parameters that have
tolerances. Then, the square the sensitivities of each
measurement are taken and are summed for each parameter.
The square root of the result is saved in a plot called “rss.”
Mathematically, the result for a single measurement is

Vresult = sqrt( S ( Vresult(param) - Vresult(nominal) )^2 )

The RSS results are printed to the IsSpice4 output file in a
format that can be read back in by SpiceNet. You can set the
measurement test limits by expanding the measurements to
“pass with symmetry” in the Results dialog, as shown.
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If the result is linearly proportional to the change in the
parameter value, then the RSS result is proportional to the
standard deviation, which we could obtain from a statistical
analysis. As a matter of convention, each tolerance is taken as
the 3 sigma value, or 3 standard deviations, and we report the
RSS results as 3 sigma. The parameter perturbation is set to 1
sigma, a compromise between a negligibly small value and the
entire tolerance band. Making the perturbation fairly large
eliminates some errors due to local maximum values occurring
nearby. You can change this variation by editing the RSS
Simulation Template.

For many circuits, the variation of a measurement with
respect to some parameters is highly nonlinear such that
this analysis will give incorrect results. This frequently
results in reporting smaller measurement variations than
would be found using a statistical analysis.

When performing an AC analysis, it is often assumed that the
response at each frequency can be considered independently.
However, this is a poor assumption because single frequency
results have an ambiguity in phase. When the difference in phase
between two simulations is taken, there can be dramatically
different results if one analysis is in a different phase plane than
the reference simulation. Because of this, it is necessary to phase

SIMULATION TEMPLATES
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EVA, Extreme Value Analysis

IIn this analysis, for each device containing toleranced parameter
values, the parameters are varied to their extreme value so that scalar
measurements (i.e., Vout, iR2, etc.) are maximized.  The extreme value
for each device tolerance with respect to a measurement is first based
on the sign of a previously-run sensitivity analysis, whereby the
device’s tolerance is slightly perturbed. If the sensitivity analysis
produced a positive change in measurement for a specified node or
device, then the device under sensitivity analysis is railed to its
maximum parametric value, or to its lowest value if a negative change
was incurred at the measured node or device. This is the basis of the
EVA-HI routine. The EVA-LO routine sets parameterized devices to
their maximum or minimum value, based on which ever produced a
minimized measurement result at a specified node or device during the
sensitivity analysis. A simulation is then run using the new extreme
parametric value for the toleranced device. The result for the node or
device measurement is saved in the “evahi” plot, or “evalo” plot. The
aforementioned sensitivity analysis and simulation are repeated for
every parameterized device in the design, and for each measurement
specified by the user. When all simulations are finished, the
measurements are printed to the IsSpice4 output file in a format that
can be read back in by SpiceNet for recording of measurements
specified in Simulation Control’s “Results” dialog. Additionally, the
output file contains a summary report for the user’s records. If making
an evalo analysis is not opted, the user can set measurement min/max
test limits by expanding the measurements to “pass with symmetry”
(amongst other choices) in the “Results”  dialog as shown below.

extend the vectors desired to measure. This makes the AC
analysis similar to the transient one, requiring measurements that
resolve to scalar values. The duality between frequency and time
seen using the Fourier transform makes this obvious.
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WCS, Worst Case by Sensitivity

In this analysis a reference simulation is first run on the design and
a plot of the data is stored to save the simulation results, notably
at nodes or devices specified by the user (i.e., Vout, iR2, etc.). Then
a new simulation is run for each device containing tolerance
parameters, perturbing the parameter by a small fraction. The
difference between these two sets of measurements are saved.
The absolute value of operations performed on the difference
measurements are summed (for the WCS_HI analysis) or subtracted
(for the WCS_LO analysis), and saved in the IsSpice4 output file
for viewing, and in a format that can be read back into the “Results”
dialog accessed from SpiceNet’s “Simulation Control” dialog (i.e.,
for viewing design “measurements”). This is not as rigorous as an
EVA analysis or a worst case by optimization, however, it is the
most computationally efficient method. In summary, differences in
electrical measurements of interest between the reference simulation
and sensitivity simulations, are continuously summed in a positive
(WCS-HI), or negative (WCS-LO) direction to give a final
measurement reading at any design node device specified by the
user. You can set the min-max measurement test limits for
prescribed nodes or devices across the design by expanding the
measurements to “pass with symmetry” (amongst other choices)
in Simulation Control’s “Results” dialog; as shown below.

The extreme value in this analysis refers to the parameters, not
the resultant measurements. For most moderately complex
circuits, the extreme value of the resultant measurement
occurs when some of the parameters are at an intermediate
value, rather than an extreme value. However, we usually find
that EVA results produce wider measurement test limits than
Monte Carlo — making it a worthwhile investment. Finding the
true extreme value of the resulting measurement requires a
solution of a multi-parameter optimization problem. This becomes
nearly impossible for larger circuits because the number of
simulations grows by an amount equal to the product of parameters
times the vectors. The EVA in its ICL script runs an analysis for
each toleranced parameter to get perturbation results, then
another for each measurement to get the final results.

SIMULATION TEMPLATES



129

CHAPTER 7 - EXTENDED ANALYSIS

The WCS analysis is based on the assumption that each
measurement is a linear function of all of the parameters.
However, for most moderately complex circuits, this assumption
is invalid. Generally you will get tolerances larger than the 3
sigma limits of a statistical analysis.  Therefore, you should run
a Monte Carlo analysis for at least 6 cases, then set tolerances
based on the Monte Carlo analysis, usually to 5 sigma, before
expanding the WCS data. In this way, you can be better assured
that non-linear relationships are taken into account.

STD, Standard

This analysis variation, on the standard simulation, eliminates
unnecessary vectors from scripted measurements. It also
illustrates several of the template directives so you can use this
as an example to begin writing your own Simulation Templates.

MONTE, Monte Carlo Analysis

Before performing this analysis,  you must first set appropriate
tolerance values on instance and model parameters using the
part properties dialog for each part, or class of parts. Then you
need to select the number of lots and cases to run from the
<Monte Dialog>. Mak sure the Monte template is selected,
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and the radio button above the question mark is selected. The
Data reduction (right side) should be set to Interactive, and the
Script checkbox must be checked. Then, Select one of the
appropriate Test Configurations and press Simulate Selections.
Progress will be shown in the IsSpice output window.

You can define the measurement results you want to view either
before or after running the analysis. Measurements defined before
running the analysis will be recorded in the database, and can be
viewed using the <Results> button in the Simulation Control dialog.
The measurements are set up for 5-sigma high values. Use the Set
Limits dialog if you are establishing measurement tolerances. The
usual procedure is to leave the nominal unchanged, and choose
“expand to pass with symmetry” to setup a symmetrical tolerance
band based on Monte Carlo results.

A new dialog in IntuScope can be activated after running a Monte
Carlo analysis by pressing the <Monte> button in the <Add
Waveforms> dialog. To plot the statistical results, you must have
saved measurements in the “prob” plot (located in the Add Waveform
dialog’s “Type” box). You can easily add to the ones there by
pressing the Monte Carlo box. Select vectors and functions from
this dialog (individual boxes), then press the <Add Function to Plot>
box just below. Incidentally, you can plot all cases of opposed
vectors on X and Y axes, by first selecting desired vector’s for both
x and y axes in the Add Waveform dialog, then press the Add box.
This will plot the first instance.  Then, in the Monte dialog, press the
Plot All Cases box for other instances.

What’s also useful is when you select a measurement from the
“prob” plot (Add Waveform dialog), and press either of the Plot
boxes (Monte dialog). Histograms or cumulative probability plots
result, scaled to your data set. Cumulative probability warps the x
axis into “sigmas,” based on a normal distribution. These plots help
visualize the statistical distribution. Probability plots best fit a
straight line through data points. If the data is normally distributed,
it will lay along this straight line. The slope of the line, or first
polynomial coefficient, is an estimate of the standard deviation.
The rms error is shown, and if small compared to the standard
deviation, you are most likely looking at a normal distribution.

SIMULATION TEMPLATES
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Next, there is a feature to isolate the data set that created
each data point. Simply place cursor 0 on a data point and
press the report button. It tells you which simulation produced
the data and shows each parameter’s value and its sigma
deviation. Using this feature, you can get an approximate
separation of class members for cases that have bi-modal
distributions. Then, you can separate class members into
several groups for more detailed investigation.

Note: To place cursor 0 exactly on a data point, place
it to the left of the point and with a blank accumulator,
press the “0->Y” button in the Cursor control toolbar.
The cursor will advance to the next data point each time
you press the button. Using the “Y<-0” marches the
cursor backward along data points.

Finally, you can substitute the values associated with one of
the simulations back into the schematic, to evaluate a “worst
case” condition, or re-center the design.

OPTIMIZE, Multi-parameter optimization

Before performing this analysis,  you must select the parameters
to vary using the Tolerance/Sweep/Optimize tap in the parts
properties dialog. The values entered for the optimize tolerance
are similar to the ones used for Monte Carlo. The set represents
a range of values for which optimization is constrained. For best
results, there should be a minimum somewhere within the
selected range. The values you select won’t be retrievable after
saving your document. Next, you must create an objective
function. To do this, use the simulation control (ICAPS) dialogs
measurement tab. You should have only one measurement in
the test configuration. It doesn’t matter what it’s named. Then
make sure the correct optimize template is selected, and the
radio button above the question mark is selected. The Data
reduction should be set to Interactive and the Script checkbox
must be checked only if you have scripted measurements.
Select one of the desired Test Configurations and press Simulate
Selections. Progress will be shown in the IsSpice output
window.
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Sweep, Parameter Sweeping

In this analysis, you can linearly sweep an outer and optionally
inner variable in a nested loop. You can assign a sweep variable
to any device parameter and if you assign the same sweep
variable to multiple parameters then their values will be changed
together as a group. For example if you assign both R1 and R2
value parameter the same sweep variable Rvary then both parts
will change their value at the same time for each step. The
sweep dialog shows all defined sweep variables and their current
available state. In the Tolerance/Sweep/Optimize tab we have
the ability to activate/disable individual sweep variables to
quickly change which parameter in a part we are sweeping.

Using the Simulation Control dialog’s Sweep button. Fill in the
Start, Stop and Step fields using numbers recognized by SPICE
(i.e., 1u, 5m, …).      The “name” field should be assigned the same
name you assigned for the sweep variables in the part properties
dialog.   As with the Monte Carlo template, you can make

Optimization is performed using algorithms that minimize
(achieve) your design objective function. Your two main challenges
are to ask the “right” question through the objective function, and
to bracket the solution space with the “tolerance” placed on the
parameter that can vary. Three designs
(Circuits\Snubber\Snubber.dwg, Circuits\ sprobe\sprobe.dwg and
Circuits\Power\FwdTemplate\FwdTemplate.dwg) all have
objective functions that can be used for optimization.

The optimization process consists of measuring the design objective
function for a set of parameter values, then finding the parameter
value that minimizes (achieves) the objective function. The
Optimize.scp is a single pass version and Optimize2.scp is a 2-
pass version. If you are doing single parameter optimization to
select a component value, then optimize should work. If you are
doing multi-parameter optimization, use optimize2. You can load
either of these into IsEd5 and modify them. “Constants.maxiter”
changes the number of iterations. The algorithm uses polynomial
regression to make a high order curve fit so that it is possible to find
a minimum value in the presence of local minimum values. The
pure mathematical versions usually perform more iterations; but,
a single iteration usually converges to within the component
tolerance value, making further passes unnecessary.

SIMULATION TEMPLATES
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After the simulation has finished, you can use IntuScope to view
the data. The Sweep button will be shown in the Add Waveforms
dialog. Internally, a plot called sweep was made to hold the
sweep results. If you didn’t specify measurements before
running the sweep template, you can plot data from the sweep
plot using either the Add Waveforms dialog or the Sweep dialog.

Three special vectors were created; sweepdef (default), ramp
and outer. Sweepdef is a sawtooth plot, which is the inner vector
that repeats for each outer point. Outer is a staircase that steps
up for each inner point. Ramp is a vector that goes from 0 to the
product of (inner * outer - 1) points. Plotting a parameter versus
ramp, and then plotting the family (i.e., outer vs. inner), you can
check the link box in the scaling dialog and drag cursor 1 along
the plot with ramp in the x-axis and view the parametric value in
the outer vs. default (inner) plot.

measurements before and/or after  running a simulation.

Next, select the Sweep template as shown below, and the radio
button above the question mark is selected. Directly above this
in the Test Configuration box, highlight a desired selection. Data
reduction (lower right corner) should be set to Interactive, and
the Script checkbox must be checked. Now press Simulate
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IsSpice4 also
accepts
statements from
the Interactive
Command
Language
described in
Chapter 11.

Element Syntax

IsSpice4 Syntax Notation

Format: Rname N1 N2 value

Examples: R1 1  2 1KOHM
QLONGNAME 15  BASE 0 QN2222

Format statements similar to the one above are used throughout
this chapter to define IsSpice4 netlist syntax.

Items in capital letters must appear exactly as shown.

• For example, the “R” in Rname.

Items in italics must be replaced by user-defined data.

• For example, the node numbers “N1” and “N2”, and the
value of the resistor, value.

The description and examples will further clarify the required
data.
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ISSPICE4 SYNTAX NOTATION

Square brackets identify optional fields. When either one option
OR another is required, the optional fields are separated by the
word “or”.

For example: Vname N+ N- [ [DC] value ]
+ [AC magval [phaseval] ]
+ [PULSE v1 v2 [ td [ tr [ tf [ pw [per]]]]]]
or [SIN vo va [ freq [ td [ kd ]]]]

In the voltage source statement, any combination of the three
options, DC value, [ [DC] value ], AC value, [AC magval
[phaseval] ], or any one of the transient signal generators,
(PULSE, SIN, PWL , etc.), can be selected. If a DC value is
entered, the DC keyword is optional. Note that the DC keyword
is nested inside the value parameter field, indicating that it is
optional. For transient signal generators, the “or” indicates that
only one of the options may be used.

Resistors/Semiconductor Resistors

Format: Rname N1 N2 [value] or [Expr]
[M=value] [modname L=length [W=width]]
[TEMP=t]

Examples: R1  1  2  1K
RS  15  32  r= 1K+1K*sqrt(time) + 5*temp
RMOD  3  7  RMODEL  L=10u  W=1u

The resistor name must start with the letter R. N1 and N2 are
the element nodes. The resistance value may be positive or
negative, but not zero. Behavioral expressions may be used. M
is the multiplicity factor that simulates parallel resistors.

The modname field refers to a resistor .MODEL statement. The
information contained in the model statement is used for
modeling temperature effects and for the calculation of the
resistance value from geometric and process information. If
value is specified, it overrides the geometric information and
defines the resistance. If an expression or value is not specified,
then the modname and length must be specified. If width is not

Resistors can
have
expressions
[Expr] for their
value. See the
Analog
Behavioral
Modeling
Section for
more
information.
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specified, then it will be taken from the DEFW value. The
optional TEMP value is the temperature at which this particular
resistor operates. It overrides the default temperature
specification that is set by the .OPTIONS TEMP parameter.

The parameters available in the resistor model are:

Resistor Model Parameters

Name Parameter Units Default Example

TC1 1st order temperature coeff. 1/deg.C 0.0 -
TC2 2nd order temperature coeff. 1/deg.C2 0.0 -
RSH sheet resistance      /sq. - 50
DEFW default width meters 10e-6 2e-6
NARROW narrowing due to side etching meters 0.0 1e-7
TNOM parameter measurement temp. deg. C 27 50

Example:Resistor model with modname=RMOD

.Model RMOD R RSH=5 DEFW=100

The sheet resistance is used with the narrowing parameter
NARROW and L and W from the resistor line to determine the
nominal resistance by the formula:

DEFW, in the resistor .model statement, is used to supply a
default value for W if one is not specified on the device line. If
either RSH or L is not specified, then the standard default
resistance value of 1k is used. After the nominal resistance is
calculated, it is adjusted for temperature by the formula:

See the .Model
statement for
more
information.

In  IsSpice4,
temperature
coefficients are
specified using
a resistor
.MODEL
statement. where DT = T - Tnom and Tnom = Nominal temperature,

27deg.C by default. Tnom can be changed using the .OPTIONS
statement. T is the analysis temperature set by the TEMP
parameter in the .OPTIONS statement.

−−
−

L NARROW
R RSH

W NARROW

= + ∆ + ∆( ) ( ) * (1 1* 2 * 2)R T R TNOM TC T TC T
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To add temperature coefficients to a resistor

• Specify the resistor with a model name and a nominal
value, for example;

R1 1 0 1K RMOD

• Construct a .MODEL statement with temperature
coefficients, for example;

.MODEL RMOD R (TC1=.01 TC2=1E-6)

The model type of resistor is designated by the R in the .MODEL
statement.

SPICE 2 Note: The method of specifying temperature
coefficients in a resistor .MODEL statement is different than the
syntax used in Berkeley SPICE 2.

Capacitors/Semiconductor Capacitors

Format: Cname N+ N- [value] or [Expr]
[M=value] [modname L=length [W=width]] [IC=v]

Example: CLOAD 5  0 10UF
CMOD  3  7  CMODEL  L=10u  W=1u

N+ and N- are the positive and negative nodes. The capacitance
value can be negative or positive, but not zero. The node
polarity is used to reference an optional initial condition in the
transient analysis. It is assigned using IC=v to make the initial
voltage across the capacitor, V(N+) - V(N-), equal to v. M is the
multiplicity factor that simulates parallel capacitors.

The modname value refers to a capacitor .MODEL statement.
The information contained in the model statement is used for

CAPACITORS/SEMICONDUCTOR RESISTORS

See the
.OPTIONS
statement or
the ICL Set
command for
more
information on
changing the
circuit
temperature.

UIC must be
present in the
.TRAN  line for
the IC=
parameter to be
used as an
initial condition.

Capacitors can
have
expressions
[Expr] for their
value. See the
Analog
Behavioral
Modeling
section for more
information.

C1   8 0  .01UF  IC=10V; cap with initial voltage
Cin  2  0  C =1u+1P*FREQ^2; frequency dependent cap
CT 1 0 C={Cval}*(1+{TC1}*(TEMP)+{TC2}*(TEMP)^2)
; temperature dependent cap where {} are passed
 parameters or stated explicitly
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the calculation of the capacitance value from geometric and
process information. If value is specified, it overrides the
geometric information and defines the capacitance. If expression
or value is not specified, then the modname and length must be
specified. If width is not specified, it will be taken from the DEFW
value (10µm). Either value or modname, length, and width may
be specified, but not both.

The parameters available in the capacitor model are:

Capacitor Model Parameters

Name Parameter Units Default Example

CJ junction bottom capacitance F/meters2 0 5e-5
CJSW junction sidewall capacitance F/meters 0 2e-11
DEFW default device width meters 10e-6 2e-6
NARROW narrowing due to side etching meters 0.0 1e-7

Example: Capacitor model with modname=CMOD

.Model CMOD C CJ=2NF CJSW=1PF DEFW=2U

The capacitor has a capacitance computed as:

Polynomial Capacitors
The polynomial capacitor function in other IsSpice programs
and SPICE 2 is not included in IsSpice. The SPICE 2 polynomial
capacitance can be represented with the following subcircuit:

+
V
-

I

2

1 +
VC
-3

See the .Model
statement for
more
information.

Capacitors and
inductors do not
have a noise
model.

CAP = CJ * (Length - Narrow) * (Width - Narrow) + 2 * CJSW * (Length + Width - 2 Narrow)
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CAPACITORS/SEMICONDUCTOR CAPACITORS

The circuit is described by the following equations:
 

V = VC - B(V)
B(V) = Q0 + Q1*V + Q2*V2 + ...
d(VC) = I/C dt = d(V + E(V))
C(V) = C*[1 + Q1 + 2*Q2*V + 3*Q3*V2 + ...]
        =   P0    +            P1*V +     P2*V2 

Where P0, ... Pj are the polynomials that will be used in the
capacitor POLY description and Q0,... Qj are used in the B
element. For example, the SPICE 2 capacitor description,

C 1 2 POLY Value P0 P1 P2...     is replaced by:
XC 1 2 POLYC {P0=val1  P1=val2  P2=val3...}

The polynomial capacitor equivalent circuit is built into the
following subcircuit.

.SUBCKT POLYC 1 2
C 1 3 {P0}
B 2 3 v=v(1,2)^2*{P1/(2*P0)} + v(1,2)^3*{P2/(3*P0)}
+ v(1,2)^4*{P3/(4*P0)} ...
.ENDS

To use the subcircuit, replace the expressions in curly braces
with the proper values, which are taken from the standard
polynomial coefficients.

Note: a capacitor whose capacitance is dependent on voltage,
or another circuit quantity, can be more easily created with the
behavioral expressions capability. For example, a polynomial
capacitor could be described as:

c1  2 0 C = P0 + P1*V(3) + P2*V(3)^2+ ...

where P0, P1..., are replaced with the polynomial coefficients
and V(3) is the controlling voltage.

The polynomial
capacitor that is
created with
this subcircuit
works for the
AC, DC, and
Transient
analysis types.
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Inductors
Format: Lname N+ N- value or [Expr] [IC=i ]

[M=value]

Example: L5   5  3  10UHY
L1  8  0  .01HY  IC=10MA

a) LiF 2 0 L = v(3) > 1 ? 0.1U : 1U
b) Lf 1 2 L= 1n + sqrt(Freq)
c) Lm 1 0 L = 1U+2*V(3) + I(R1)
d) Lt 2 0 l=0.1p + 1m*temp + 10u*temp^2

The inductor name must start with the letter L. N+ and N- are the
positive and negative nodes. Value can be negative or positive,
but not zero. Inductors can have an expression for the inductance
value. For example: a) shows a If-Then-Else expression, If V(3)
is greater than 1V then LiF=0.1mH, otherwise LIF=1mH.
b) describes a frequency dependent inductor. Note that the
Freq value is zero during the transient analysis, hence the
addition of 1n to the square root term. c) describes a voltage
and current dependent inductor, while d) describes a
temperature dependent inductor. All of these forms may be
used for capacitors and resistors as well.

Current flows from the positive node, through the inductor, to
the negative node. Polarity is used to reference initial conditions.
Initial conditions for the transient analysis are assigned using
the IC= value to make the initial current equal to i. The UIC
keyword must be present in the .TRAN statement for the IC to
be used at the start of the transient analysis.

M is the multiplicity factor that simulates parallel inductors.

Polynomial inductors can be created with the behavioral
expressions feature in IsSpice4. For example, a polynomial
inductor could be described as:

L1  2 0 L = P0 + P1*I(V1) + P2*I(V1)^2+ ...

where P0, P1..., are replaced with the polynomial coefficients
and I(V1) is the controlling current.

Current flow is
considered to
have a positive
magnitude
when it flows
into the plus
node of a
IsSpice4
element.

See the Analog
Behavioral
Modeling
section for more
information on
the expressions
capabilities.
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Coupled Inductors

Format: Kname1  Lname2  Lname3  value

Example: K12  L1  L2  .9999

The coupling element name begins with K. Two inductors are
referenced in the statement. The standard dot convention
determines the polarity. The positive inductor nodes (first node
in the L statement) carry the dot. Current flowing into a dot will
flow out of the other dot, or voltage seen across one inductor will
be reflected to the other inductor with the dots having the same
voltage polarity. The coupling coefficient, value, must be less
than 1 and greater than 0.

Coupled inductors are governed by the following behavior.

The equivalent circuit, using discrete leakage and magnetizing
inductances and an ideal transformer, is shown to the right.

If multiple inductors are coupled, all combinations of coupling
must be specified. Multiple winding transformers can be
simulated in this manner.

COUPLED INDUCTORS

+
V1
-

1:Ni1 i2

+
V2
-

=M 1* 2K L L →
=

=

= −

2

1

1

2 1

1
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L N L

Le
K
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If

= +

= +

1 2
1 1

1 2
2 2

di di
V L M

dt dt
di di

V M L
dt dt

Coupled
inductors may
need a small
nonzero initial
condition, on
the L line, in
order to aid the
DC operating
point and the
start of a
transient
simulation.

A IsSpice4
transformer; its
equivalent
circuit and
related
equations

If KÆÆÆÆÆ ¨̈̈̈̈
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For example: Represents:

L1  4  5  1UH
L2  5  6  2UH
L3  8  9  3UH
K12  L1  L2  .999
K23  L2  L3  .95
K13  L1  L3  .995

Ideal Transmission Lines

Format: Tname  N1  N2  N3  N4  Z0=value
+  [TD=val2 ] or [F=freq  [NL=nlen ]  ]
+  [IC=v1, i1, v2, i2]

Example: T1  1  0  2  0  Z0=50  TD=25NS
T2  1  2  3  0  Z0=75  F=100MEG

Transmission line names must begin with the letter T. N1 and
N2 are the nodes at port 1. N3 and N4 are the nodes at port 2.
The transmission line length must be specified either in terms
of delay time, or frequency and wavelength. Z0 specifies the
characteristic impedance and TD specifies the time for a wave
to propagate from port 1 to port 2. The optional specification of
transmission line length using F and NL can replace the TD
specification. F is a frequency and NL is the normalized
electrical length of the transmission line with respect to the
wavelength in the line at frequency F. If NL is omitted, it defaults
to .25, a quarter wavelength. One of the two forms for expressing
the line length must be specified.

Either port of the transmission line may be left unconnected in
order to study the effects of open-circuited transmission lines.
An unconnected dummy node number can be used to fill the
syntax requirements, but both ports must still have a DC path
to ground. The optional initial condition specification consists of
the voltage and current at each of the transmission line ports.
The initial conditions (if any) apply only if the UIC option is
specified on the .TRAN line.

4

5

8

6 9

Multiple
coupled
inductors must
include all
combinations of
coupling.

See the
.OPTIONS
Minbreak for
more
information on
reducing the
simulation
runtime when
using ideal
transmission
lines.

L1

L2

L3
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The ideal T-line is a bidirectional delay line. It models only one
propagating mode. If all four nodes are distinct in the actual
circuit, then two modes may be excited. To simulate such a
situation, two transmission-line elements are required.

Note: Use of the lossy transmission line with zero loss (R=0,
G=0) may be more accurate than the lossless transmission
line, due to its superior implementation.

Lossy Transmission Lines

Format: Oname  N1  N2  N3  N4  modname

Example: O23  1  0  2  0  LOSSYMOD
Oconnect  10  5  20  5  Interconnect

The lossy transmission line begins with the letter O. N1 and N2
are the nodes at port 1; N3 and N4 are the nodes at port 2.

The O element uses the two-port LTRA model and can represent
single conductor lossy transmission lines. It models a uniform
distributed RLCG transmission line. The RC case may also be
modeled using the URC model. However, the LTRA model is
usually faster and more accurate. The operation of the LTRA
model is based on the convolution of the transmission line’s
impulse responses with its inputs [reference 10-11].

The LTRA model takes a number of
parameters, some of which must be
provided, and some that are optional. The
Resistance and conductance terms can
have expressions for their values.

LOOSY TRANSMISSION LINES

Lossy transmission
line section

For a typical
propagation
delay of 125ps/
inch, if Z is the
impedance of
the
transmission
line, then
L=Z*125p
C=125p/Z
Z=impedance
and LEN is the
length, in
inches.

Example: 2.6kM of 26AWG Twisted Pair wire: R and G vary
with frequency:

.Model PE4MM LTRA L=680U C=45N LEN=2.6
+ R=268.0 * ABS((1 + FREQ / 1.3922E6)^0.493)
+G=2.4E-10 * ABS((1 + FREQ / 5.2137)^0.87)

R L
C

G
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Lossy Transmission Line Model Parameters

Name Parameter Units/type Default Example

R resistance/length W/length 0.0 0.2
L inductance/length henrys/len 0.0 9.13e-9
G conductance/length mhos/len 0.0 0.0
C capacitance/length farads/len 0.0 3.65e-12
LEN length of line any length none 1.0
REL breakpoint control none 1 0.5
ABS breakpoint control none 1 5
NOSTEPLIMIT don't limit timestep flag not set nosteplimit

to less than the line
delay

NOCONTROL don’t do complex flag not set nocontrol
timestep control

LININTERP use linear flag not set lininterp
interpolation

MIXEDINTERP use linear when flag not set set
quadratic seems bad

QUADINTERP use quadratic flag set quadinterp
interpolation

COMPACTREL special reltol for none RELTOL 1.0e-3
history compaction

COMPACTABS special abstol for none ABSTOL 1.0e-9
history compaction

TRUNCNR use Newton-Raphson flag not set truncnr
method for timestep
control

TRUNCDONTCUT don’t limit timestep to flag not set -
keep impulse response
errors low

Example: 24 inch lossy line with L=9.13nH/inch, C=3.65pF/
inch, and R=.2W/inch:

.Model Lline Ltra rel=1 r=.2 g=0 l=9.13e-9 c=3.65e-12
len=24 compactrel=1.0e-3 compactabs=1.0E-14

Example:  lossless line L=9.13nH/inch and C=3.65pF/inch:

.Model Lfive Ltra rel=10 r=0 g=0 l=9.13e-9 c=3.65e-12
len=.2 steplimit quadinterp nocontrol

The R and G
parameters can
have
expressions for
their values.
See the Analog
Behavioral
Modeling
Section for
more info.
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LOSSY TRANSIMISSION LINES

The following types of lines are implemented in IsSpice4:

RLCG (uniform transmission line with resistive and conductance
losses), RC (uniform RC line), LC (lossless transmission line),
and RG (distributed series resistance and parallel conductance
only).

Parameter Explanation
The values of R, L, G, and C are specified per unit length, where
LEN is the length of the line. LEN must be specified. For
example, if LEN is .5 and R is specified in 1W/cm, then the line
will be 1/2 cm long and have .5W resistance.

REL and ABS are quantities that control the setting of breakpoints. The
option that is most effective for increasing simulation speed is REL.
The default value of 1 is usually safe from the viewpoint of accuracy,
but occasionally increases computation time. A value of greater than
2 eliminates all breakpoints, and may be worth trying depending on the
nature of the rest of the circuit. However, keep in mind that it might not
be safe from the viewpoint of accuracy. Breakpoints may usually be
eliminated or reduced if it is expected that the circuit will not display
sharp discontinuities. Values between 0 and 1 are usually not required,
but may be used for setting many breakpoints.

NOSTEPLIMIT is a flag that removes the default restriction of limiting
timesteps to less than the line delay in the RLC case. STEPLIMIT
(default) forces the timestep to be limited to .8 times the delay of the
transmission line.

NOCONTROL is a flag that prevents the default limiting of the
timestep, based on convolution error criteria in the RLC and RC cases.
This speeds up simulation but may reduce the accuracy of results in
some cases.

TRUNCDONTCUT is a flag that removes the default cutting of the
timestep to limit errors in the actual calculation of impulse response-
related quantities.

NOCONTROL, TRUNCDONTCUT and NOSTEPLIMIT tend to
increase speed at the expense of accuracy.
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LININTERP is a flag that, when specified, will use linear interpolation
instead of the default quadratic interpolation (QUADINTERP) for
calculating delayed signals.

MIXEDINTERP is a flag that, when specified, causes IsSpice4 to judge
whether or not quadratic interpolation is applicable. If it is not, IsSpice4
uses linear interpolation; otherwise it uses the default quadratic
interpolation.

COMPACTREL and COMPACTABS are quantities that control the
compaction of the past history of values stored for convolution. The
legal range is between 0 and 1. Larger values of these parameters will
lower the accuracy, but will usually increase simulation speed. These
parameters are to be used with the TRYTOCOMPACT option, described
in the .OPTIONS section. If TRYTOCOMPACT is not specified in the
.OPTIONS statement, history compaction is not attempted and the
accuracy is high.

TRUNCNR is a flag that turns on the use of Newton-Raphson iterations
to determine an appropriate timestep in the timestep control routines.
The default is a trial-and-error procedure, which cuts the previous
timestep in half.

Multiple Coupled Lossy Lines
A utility program, called “Multidec”, is included in the MISC-PR
subdirectory. Multidec produces SPICE compatible subcircuit
representations of multiconductor coupled lossy transmission
lines in terms of uncoupled (single) simple lossy lines. A batch
file and a readme file are also included, and explain the
operation of the program in detail.

Generic Model for Microstrip Style Interconnect

Geometric Values:
2µm thick (hth), 11µm wide (wth), 1m long (lth), and 10µm (d)
above the ground.
(Note: Subcircuit parameters are shown in parentheses.)
Material:
aluminum - resistivity (sigma) = 2.74e-8- W m
Constants: ( MKS units)
SiO2 dielectric, (er) =3.7 er0 = 8.85p , µ0 = 4e-7 * p, speed of
light in free space = v0 = 1/sqrt(µ0 * er0) = 2.9986e8
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RC/RD TRANSMISSION LINES

Line parameter calculations (per meter):
Capacitance: parallel plate
C = er * er0 * Area1 / d = 3.7 * 8.85p * 11µ * 1 / 10µ
= 36.02e-12 F/m + 30% (for fringing effects) = 46.8 pF/m

C_freespace = C0 = C/er = 46.8p/3.7 = 12.65 pF/m
v0 = 2.9986e8 = 1/sqrt(L*C0) => L = 1/(C0 * v02)
L = 1/(12.65p * 8.9916e16) = 0.8792 µH/m
R = sigma * lth / Area2 = 2.74e-8 * 1 / (11µ * 2µ)
= 1245.45 W/m

Resulting Transmission line parameters:
Nominal z0 = sqrt(L/C) = 137/ , td = sqrt(LC) = 6.4ns/m

XLINE 2 0 3 0 LLINEG {SIGMA=2.74E-8 D=10U ER=3.7
+ ER0=8.85P LTH=1 WTH=11U HTH=2U LEN=.16}
* 16cm line length

.SUBCKT LLINEG 1 3 {ER0=8.85P}
O1 1 0 3 0 LOSSY
.MODEL LOSSY LTRA rel=1.8 len={LEN}m
+ r={SIGMA*LTH/(WTH*HTH)}ohms/m g=0
+ l={1/(1.3*ER0*(LTH*WTH)/D*(2.9986E8^2))}H/m
+ c={1.3*ER*ER0*(LTH*WTH)/D}F/m
.ENDS

Uniformly Distributed RC/RD Transmission Lines

Format: Uname  N1  N2  N3  modname  L=len  [N=lumps]

Example: U1  1  2  0  URCMOD  L=50U
URC2  1  12  2  UMODL  l=1MIL  N=6

The uniformly distributed lossy RC line begins with the letter U.
N1 and N2 are the two element nodes for the RC line. N3 is the
capacitance node. Modname is the lossy RC line's model
name. Len is the length of the RC line in meters. Lumps, if
specified, is the number of lumped segments used to model the
RC line.

For microstrip
lines that are
very wide (w->
×) the line will
behave like a
parallel plate
capacitor.
Equations in the
{ }'s perform the
line parameter
calculations for
any set of
geometric
values.
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RC/RD Transmission Line Model Parameters

Name Parameter Units Default Example

K propagation constant  - 1.5 1.2
FMAX maximum frequency Hz 1.0G 6.5Meg

of interest
RPERL resistance per unit length W/m 1000 10
CPERL capacitance per unit length F/m 1e-12 10pF
ISPERL saturation current per unit length A/m 0 -
RSPERL diode resistance per unit length    W/m 0 -

Example: RC model with modname=TLINE

.Model TLINE URC K=1 FMAX=100MEG RPERL=1
+ CPREL=10PF

The URC line will be comprised of resistor and capacitor
segments unless the ISPERL parameter is given a nonzero
value. In this case, the capacitors are replaced with reverse-
biased diodes with a zero-bias junction capacitance that is
equivalent to the capacitance replaced, a saturation current
of ISPERL amps per meter of transmission line, and an
optional series resistance that is equal to RSPERL ohms per
meter.

The URC model is derived from a model that was proposed by
L. Gertzberrg in 1974. The model is created by using a
subcircuit type expansion of the URC line into a network of
lumped RC segments with internally generated nodes. The RC
segments are in a geometric progression, increasing toward
the middle of the URC line, with K as a proportionality constant.
The number of lumped segments used, N, if not specified on the
URC line, is determined by the following formula:

π −  
    =

2
max

1
log 2

log

R C K
F L

L L K
N

K
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Switches (with Hysteresis)

Format: Sname  N+  N-  NC+ NC- modname  [ON] [OFF]
Format: Wname  N+  N-  vname modname  [ON] [OFF]

Example: S1  1  2  3  4  switch1  ON
s2  5  6  3  0  SM2  off
SWITCH1  1  2  10  0  Smodel1
w1  1  2  VCLOCK  Switch
W2  3  0  VRAMP  SM1  ON
wreset  5  6  Vclock  Lossysw  OFF

The voltage-controlled switch begins with the letter S. The
current-controlled switch begins with the letter W. N+ and N-
represent the connections to the switch terminals. The model
name, modname, is mandatory, while the initial conditions are
optional. For the voltage-controlled switch, nodes NC+ and
NC- are the positive and negative controlling nodes, respectively.
For the current-controlled switch, the controlling current is the
current through the specified voltage source. The direction of
the positive controlling current flow is from the plus node,
through the named voltage source, to the negative node. ON or
OFF options specify the switch state for the DC operating point.

The switch model allows an almost ideal switch to be described
in IsSpice4. The switch is not quite ideal, in that the resistance
can not change from 0 to infinity, but must always have a finite
positive value. By proper selection of the on and off resistances,
they can be effectively zero and infinity in comparison to other
circuit elements.

The switch has hysteresis as described by the VH and IH
parameters. For example, the voltage-controlled switch will be
in the on state, with a resistance RON, at VT+VH. The switch
will be in the off state, with a resistance ROFF, at VT-VH. The
same applies for the current-controlled switch with IT and IH.

IsSpice4
contains 4
types of
switches, S
element (switch
with hysteresis),
B element
switches,
subcircuit
switches, and a
smooth
transition switch
(see next
section).

The S/W
element
switches is
equivalent to
the Berkeley
SPICE 3 switch.
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Switch Model Parameters

Name Parameter Units Default Switch

VT threshold voltage Volts 0.0 S
VH hysteresis voltage Volts 0.0 S
IT threshold current Amps 0.0 W
IH hysteresis current Amps 0.0 W
RON on resistance W 1.0 both
ROFF off resistance W 1/GMIN *both

Example:Voltage-controlled Switch modname=SMOD, on
resistance=1µW, off resistance=1kW, on/off voltage=2V

.Model  SMOD  SW  RON=1U  ROFF=1K  VT=2V

Example:Voltage-controlled Switch modname=SMOD, default
resistances, on voltage=5V, off voltage=3V

.Model  SMOD  SW  VT=4V  VH=1V

Example:Current-controlled Switch modname=CSMOD, on
resistance 100W, off resistance 1MegW, on/off current 3mA

.Model  SMOD  CSW  RON=100  ROFF=1MEG  IT=3M

The use of an ideal element that is highly nonlinear, such as a
switch, can cause large discontinuities to occur in the circuit
node voltages. The rapid voltage change associated with a
switch changing state can cause numerical roundoff or tolerance
problems, which lead to erroneous results or timestep difficulties.
You can improve the situation even further by taking the
following steps:

Set the switch impedances only high and low enough to be
negligible with respect to other elements in the circuit. Using
switch impedances that are close to “ideal” under all circumstances
will aggravate the discontinuity problem. Of course, when modeling
real devices such as MOSFETS, the on resistance should be
adjusted to a realistic level, depending on the size of the device
being modeled.

Using a range
of RON to
ROFF of
greater than
1E+12W is not
recommended.

*See the
description of
the .OPTIONS
GMIN
parameter. Its
default value
results in an off
resistance of
1.0E+12W.
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The switch is a
voltage-
controlled
resistor.

If a wide range of ON to OFF resistance must be used (ROFF/
RON >1E+12), then the tolerance on errors allowed during the
transient analysis should be decreased by specifying the
.OPTIONS TRTOL parameter to be less than the default value
of 7.0. When switches are placed around capacitors, the
.OPTIONS CHGTOL parameters should also be reduced.
Suggested values for these two options are 1.0 and 1E-16,
respectively. These changes inform IsSpice4 to be more careful
near the switch points so that no errors are made due to the rapid
change in the circuit response.

There are two other ways to model a switching function, both of
which have the added advantage of a smoother transition
region between the on and off states. The first uses a subcircuit
approach with a dependent source, and the second uses the
analog behavioral B element with in-line equations. The following
subcircuits are stored in the Device.Lib library file.

Generic Switch Subcircuit
The generic switch is actually a voltage-controlled resistor. It
can, therefore, be used as a switch or a potentiometer. The
switch is created with a voltage-controlled current source (G
element) that is tied back onto itself. The netlist is shown next.

*OPEN WHEN V(3) = 0,
*CLOSED WHEN V(3) < > 0
*ON RESISTANCE = 1 / V(3)
*OFF RESISTANCE IS 1E12
.SUBCKT SWITCH 1 2 3
R1 1 2 1E12
G1 1 2 POLY(2) 1 2 3 0 0 0 0 0 1
.ENDS

The switch is very simple to use. Applying zero volts to the
control input (node 3) opens the switch. The open resistance is
1E12 ohms = R1. It may be changed if desired. Applying any
voltage to the switch control input, node 3, closes the switch
and gives it a resistance of 1/V(3). For example, applying a
voltage pulse 0 to 1 volt to the control input will change the
resistance of port 1 to port 2 from 1E12 to 1 ohm. This switch
model does not have any hysteresis.
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Switch (Smooth Transition)

Format: Aname  N+  N-  NC+ NC- modname

Example: A1  1  2  3  4  Switch
.Model Switch Vswitch

IsSpice4 includes a special voltage-controlled switch with a
smooth on-off transition region. This is in contrast to the
Berkeley SPICE switch that has hysteresis. N+ and N- represent
the connections to the switch terminals. The model name,
modname, is mandatory. NC+ and NC- are the positive and
negative controlling nodes, respectively.

Smooth Transition Switches
The Berkeley SPICE switch in IsSpice4 changes resistance
rapidly when the threshold (VT+VH or VT-VH) is reached. As
stated earlier, this may cause convergence problems. Therefore,
this switch, which has a continuously changing resistance
between the on and off voltage thresholds, can be substitued.

Switch Model Parameters

Name Parameter Units Default

VON ON voltage Volts 1.0
VOFF OFF voltage Volts 0.0

RON ON resistance Ω 1.0

ROFF OFF resistance Ω 1.0E6

Example: .Model  SMOD  VSWITCH  RON=1U  VON=2V

Smooth Transition (B element) Switches
Shown next are generic models for several switches whose
resistance changes gradually between the on and off voltage
thresholds. Since the models are implemented with a single B
element, they run very quickly. However, they are still not as
fast as the built-in switches. The PSW1 switch emulates the
code model switch outlined above while the second switch

The smooth
transition switch
is equivalent to
the built-in
Pspice® switch.

The smooth
transition switch
is C Code
Model; hence
its keyletter is
an “A”.
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The parameter
SC can be
varied to
change the
transition slope.

A variety of
smooth
transition
switches using
B element are
available in
under Switches
in the Parts
Browser dialog.

uses an exponential transition region function. The subcircuit
connections are the same as for the S and W switches: Out+
(1), Out- (2), Vctrl+ (3), Vctrl- (4). A graph of the different switch
responses is shown above.

Smooth Transition switch, Von > Voff Case
.SUBCKT PSW1 1 2 3 4 {RON=1 ROFF=1MEG VON=1 VOFF=0}
*If VC > VON then RS=RON, If VC < VOFF then RS=ROFF,
* else RS 1MEG
B1 1 2 I=V(3,4) < {VOFF} ? V(1,2)/{ROFF} : V(3,4) > {VON} ?
+ V(1,2)/{RON} : V(1,2)/ (EXP(LN({(RON*ROFF)^.5}) +
+ (3 * LN({RON/ROFF}) * (V(3,4) - {(VON+VOFF)/2}) /
+ {2 * (VON-VOFF)}) - (2 * LN({RON/ROFF}) *
+ (V(3,4) - {(VON+VOFF)/2})^3 / {(VON-VOFF)^3} )))
.ENDS

Fermi Probability Function
.SUBCKT EXPSW 1 2 3 4 {RON=1 ROFF=1MEG VON=1
+ VOFF=0 SC=20}
B1 1 2 I=V(1,2)/({RON} + ({ROFF-RON}/(1 + EXP({SC} *
+ (V(3,4)/{(VON+VOFF)/2} - 1)))) )
.ENDS
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Independent Voltage Sources

Format: Vname N+ N-
Operating Point + [ [DC] value ]
AC/Noise analysis + [AC magval [phaseval] ]
Distortion analysis + [DISTOF1 [F1magval [F1phaseval]]]

+ [DISTOF2 [F2magval [F2phaseval]]]
Transient analysis +  v=expression

+  [PULSE v1 v2 [ td [ tr [ tf [ pw [per [delay*]]]]]]]
or [SIN vo va [ freq [ td [ kd [delay*]]]]]
or [EXP v1 v2 [ td1 [ t1 [ td2 [ t2 ]]]]]
or [PWL t1 v1 t2 v2... tn vn]
or [SFFM vo va freq [ mdi [ fs [delay*]]]]

Example: DC operating point value=5V, transient 5V constant
power supply. Note: The DC keyword is optional.

VCC  5  0  5V  æ  VCC  5  0  DC 5V

Example: Current meter. Value for DC operating point, AC,

and transient analysis is 0V. Impedance: 0Ω .

VM1  2  3

Example: 5ns width pulse. Syntax follows the guidlines of B
element expression syntax. Same as B element except no
derivatives are calculated. The value of the source is calculated
at each iteration using the previous sate of the simulator.

VIN 2 3 v = TIME < 5n ? 1 : 0

Example: Stimulus for the AC analysis. Used for frequency
response and Bode plots. DC Operating point/transient analysis
value, 0V.

VIN  1  0  AC 1

Example: Stimulus for the transient analysis only. Not to be
used for AC/frequency response analysis. DC operating point
value, 1V. Transient sinusoidal large signal waveforms with 1V
offset and 5V peak value, 1MegHz frequency.

VIN  13  2  SIN   1   5   1MEG

Example: DC value 1V, AC magnitude 1, transient step from 0
at t0- to 1 at t0+, initial transient value is 0.

VIN  1  0   DC  1   AC  1   PULSE  0  1

See the
Alternating
Current
Stimulus
section for more
information on
AC analysis
stimulus
requirements.

In the DC field
of the Voltage
Source
Properties
Dialog enter
v=expression.
No affect on AC
Analysis.
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Example: AC magnitude value=1, DISTOF1 magnitude=1
(default), DISTOF2 magnitude=.001.

VIN1 1 5 AC 1 DISTOF1 DISTOF2 0.001

Independent voltage source names begin with the letter V. N+
and N- are the positive and negative nodes. Sources can be
assigned values for the DC (operating point), AC, Noise,
Distortion, and Transient analyses on the same line.

Current Flow
Positive current is assumed to flow into the positive node,
through the source, and out the negative node. Initially, this
may appear contrary to standard practice, but this convention
is maintained for all IsSpice4 elements. Keep this fact in mind
when measuring current flow with a voltage source.

DC (Operating Point) Value
The DC value is used for both the DC and transient analyses if
no time-varying transient stimulus is specified. If the source
value is time-invariant (e.g., a power supply), then the value
may be preceded by the letters DC. Note, the DC sweep
analysis (.DC) overrides this value. The DC value, if present,
will be used as the operating point value for the AC analysis,
while the initial transient source value will be used for the initial
transient solution. If no DC value is given, the initial transient
value will be used for the DC operating point.

AC/Noise Analysis Value
Magval is the AC magnitude and phaseval is the AC phase, in
degrees. The source is set to this value only during the AC and
Noise analyses. The defaults for magval and phaseval are 1
and 0 degrees, respectively. The AC keyword must be present
for the source to be used as a stimulus in the AC/Noise
analyses. The AC parameter is used for the AC small signal
frequency and noise analyses only, so its value will not be
related to nonlinear or saturation characteristics. The AC
magnitude value is usually set to 1 so that the node voltage data
from the .PRINT AC statement is equal to the circuit gain (Gain
= Voutput/Vin, which equals Voutput when Vin = 1).

INDEPENDENT VOLTAGE SOURCES

The initial
transient value
overrides the
DC value during
the initial
transient
operating point.

At least one
source must
have the AC
keyword in
order for the AC
and Noise
analyses to be
performed.
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Distortion Analysis Value
DISTOF1 and DISTOF2 are the keywords that specify the
independent source distortion stimulus at the frequencies F1
and F2, respectively (See the description of the .DISTO
statement). The keywords may be followed by optional
magnitude and phase values. Like the AC values, the default
values of the magnitude and phase for distortion stimulus are
1.0 and 0.0 degrees, respectively.

Measuring Current
Voltage sources can be used to measure current flow in a circuit
branch. Voltage sources used solely as current meters have no
value. The specification for reading the current through a
voltage source during a particular analysis is determined by the
.PRINT statement. As mentioned above, positive current flow
in all IsSpice4 elements, including voltage sources, is from the
positive node to the negative node. The orientation of the
voltage source will, therefore, determine the polarity of the
measured current.

To measure current in a circuit without affecting the circuit
operation;

• Insert a zero-valued voltage source into the branch through
that you would like to measure the current. For example,
“VM1  1  2” will measure the current flowing from node 1 to
node 2. “.PRINT TRAN I(VM1)” will save the value of the
current through the source for the transient analysis.

The source will have no effect on the circuit operation since it
represents a short circuit.

Alternating Current Stimulus
The inclusion of the proper circuit stimulus is important if you
want the correct results from IsSpice4. One particular area that
is commonly misunderstood is the difference between the “AC
1” AC/noise analysis stimulus and the “SIN” transient signal
generator, explained in the next section. Although both provide
a sinusoidal stimulus, they have vastly different uses. The AC
1 stimulus is used solely to produce a stimulus for the frequency

Note that
voltage sources
need not be
grounded.

At least one
source must
have the
DISTOF1 and/
or DISTOF2
keywords for
the distortion
analysis to be
performed.

Voltage
sources have a
default value of
zero for all
analyses.
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response analysis.  The magnitude will not have a nonlinear
effect on the reuslts because all of the device models are
linearized before the frequency repsonse is performed.  In
contrast, the amplitude of the SIN wave stimulus can have a
dramatic effect on the circuit operation during the transient
analysis because nonlinear  responses are included.

In summary:

• The AC1 keyword is used for the small-signal linear AC and
noise analyses only.  Use it if you want to obtain the
frequency response, Bode plot output or circuit noise.

VIN1 0 AC 1 - For AC Analysis

• The  SIN stimulus is used for nonlinear transient analysis
only.  Use it if you want a large singal sinusoidal time-
domain stimulus.  The SIN stimulus does not have any
effect during the AC analysis.

VIN1  0 SIN 0 1 1kHz - For Transient Analysis

Transient Signal Generators

There are five independent transient signal functions:  pulse,
exponential, sinusoidal, piecewise linear, and single-frequency
FM.  The syntax for these generators can be specified together
with stimuli for other analysis types ona singleindependent
source line (See voltage source examples).  However, only one
of the transient signal generators (PULSE, SIN, EXP, PWL or
SFFM) can be selected for each source.

Some of the parameters int he transient signal generators must
be entered, while some of the parameters have defaults that
are based on the TSTEP and TSTOP values.  The values of
TSTEP and TSTOP  are defined in the .TRAN statement.

Note:  Other
Transient
Signal
Generators are
available via the
Parts Browser
dialog under
!Generators.
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Format: PULSE v2 v2 td tr tf pw per

Generates a continuous periodic pulse train.  The pulse period,
per, does not include the initial delay, td.

Parameters Units D e f a u l t

v1 Initial Value Volts None
v2 Pulsed Value Volts None
td Delay Time Sec TSTEP
tr Rise Time Sec TSTEP
tf Fall Time Volts None
pw Pulse Width Sec TSTOP
per Period Sec TSTOP
delay phase delay degrees 0

For example, the waveform above was generated with:
V1 1 0 PULSE 0 1 100N 40N 90N 200N 390N

 For example,  a triangle wave:
V1 1 0 PULSE 0 1 0N 100N 100N 1P 200N

Format: SIN vo va freq td kd

Generates an optionally damped sine wave described by the
following equations:

Time Value
0 to TD vo
TD to TSTOP

Parameters Units D e f a u l t

vo Offset Volts None
va Peak Amplitude Volts None
freq Frequency Hz 1/TSTOP
td DelayTime Sec 0
kd Damping coeff. Sec-1 None
delay phase delay degrees 0

td))-(t*fsin(2*kd)*t)-((td esp*  va  vo v π+=  
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For example, the waveform above was generated with the
following statement (0 to 1 volt, 10kHz, 50µs delay):

V1 1 0 SIN 0 1 10E3 50U 10E3

For example, a sine wave with an offset of 5 Volts, peak
amplitude of 2 Volts, and a 1kHz frequency:

V1 1 0 SIN 5 2 1K

Format: EXP v1 v2 td1 t1 td2 t2

Generates an exponentially tapered pulse that is described by
the following table:

Time Value

0 to td1

td1 to td2

td2 to TSTOP

Parameters Units Default

v1 Initial Value Volts None
v2 Pulsed Value Volts None
td1 Rise Delay Time Sec 0
t1 Rise Time Constant Sec TSTEP
td2 Fall Delay Time Sec td1 + TSTEP
t2 Fall Time Constant Sec TSTEP

For example, the waveform to the left was generated with the
following statement:

V2 3 0 EXP 0 1 30N 25N 200N 100N

1

TRANSIENT SIGNAL GENERATORS

t2
t1

v1

v2

td2td1

]
1

)1(1)[12(1
t
tdtevvv −−−−+





 −−−−+



 −−−−+

2
)2(1)21(

1
)1(1)12(1

t
tdtevv

t
tdtevvv

1v

SIN is used for
time-domain
analyses, not
frequency-
domain.

Values with no
default MUST
BE SPECIFIED.

Format: PWL t1 v1 t2 v2 ..... tn vn
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10

M

M

M

0

1
0

M

0vo

va

A piecewise linear function is generated using
straight lines between points. Each pair of
values (tn, vn) specifies that the value of the
source is vn (in Volts) at time = tn. The value of
the source at intermediate values of time is
determined by linear interpolation on the input
values. The waveform value will remain at vn
from tn to TSTOP.

For example, the waveform to the left was
generated with the following statement:

V1 2 0 PWL 0 0 10N 0 100N 1 150N 1 225N .5 250N .7

Note: Any number of continuation lines can be used to create
long PWL waveform representations.

Format: SFFM vo va fc mdi fs

Generates a single frequency FM modulated signal described
by the following equations.

value=vo + va * sine((2p*fc*time) + mdi * sine(2p*fs*time))

Parameter Units Default

vo Offset Volts None
va Amplitude Volts None
fc Carrier frequency Hz 1 / TSTOP
mdi Modulation index 0
fs Signal frequency Hz 1 / TSTOP
delay phase delay degrees 0

For example, the waveform to the left was generated with the
following statement:

V2 3 0 SFFM 0 1 16MEG 4 2MEG

See the “PWL
Source” code
model for a
repeating PWL
function.

t3,v3 tn,vn

t1,v1

t2,v2

0 600n
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INDEPENDENT CURRENT SOURCES

+

-

1

Independent Current Sources

Format: Iname N+ N-
Operating Point + [ [DC] value ]
AC/Noise analysis + [AC magval [phaseval] ]
Distortion analysis + [DISTOF1 [F1magval [F1phaseval]]]

+ [DISTOF2 [F2magval [F2phaseval]]]
Transient analysis +  i=expression

+  [PULSE i1 i2 [ td [ tr [ tf [ pw [per [delay*]]]]]]]
or [SIN io ia [ freq [ td [ kd  [delay*]]]]]
or [EXP i1 i2 [ td1 [ t1 [ td2 [ t2 ]]]]]
or [PWL t1 i1 t2 i2... tn in]
or [SFFM io ia freq [ mdi [ fs  [delay*]]]]

Example: IIN  1  0  DC  0  PULSE  0  1MA
IIN 1  0  i = TIME < 5n ? 1 : 0
ISRC  5  0  5MA
IIN 13 2   0.001  AC  1  SIN (0  1  1MEG)
ICARRIER 1 0 DISTOF1  0.1  -90.0
IMODULATOR 2 0 DISTOF2   0.01

Independent current source names begin with the letter I. N+
and N- are the positive and negative nodes. Sources can be
assigned values for the DC (operating point), AC, Noise,
Distortion, and Transient analyses. The independent current
source is very similar in syntax and function to the independent
voltage source. For more examples and information on the
transient current signal generators, see the syntax examples in
the independent voltage source section.

Current Flow
Positive current is assumed to flow from the positive node,
through the source, to the negative node. A current source of
positive value will force current to flow into the N+ node, through
the source, and out of the N- node.

DC (Operating Point) Value
The DC value is used for both the DC and transient analyses if
no time-varying transient stimulus is specified. If the source
value is time-invariant (e.g., a stiff current source), then the
value may optionally be preceded by the letters DC. Note the

I1  0  1

+

-

1
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DC sweep analysis (.DC) overrides this value. If the DC value
is present, it will be used in the small signal bias solution that is
calculated prior to the AC analysis. Otherwise, the initial transient
value will be used for both the small signal bias solution and the
initial transient solution.

AC Analysis Value
magval is the AC magnitude and phaseval is the AC phase, in
degrees. The source is set to this value only during the AC and
Noise analyses. The defaults for magval and phaseval are 1
and 0 degrees, respectively. Note, the AC keyword must be
present for the source to be used as a stimulus in the AC and
Noise  analyses. If the source is not an AC small-signal input,
the keyword AC should be omitted. The AC parameter is used
for small-signal analysis so that its value is not related to
saturation characteristics. The AC value is usually set to 1 so
that the node voltage data from the .PRINT AC  is equal to
impedance (Impedance = Voutput/Iin = Voutput with Iin = 1).

Distortion Analysis Value
DISTOF1 and DISTOF2 are the keywords that specify that the
independent source has distortion inputs at the frequencies F1
and F2, respectively (See the description of the .DISTO card).
The keywords may be followed by optional magnitude and
phase values. Like the AC values, the default values of the
magnitude and phase for distortion stimuli are 1.0 and 0.0
degrees, respectively.

Transient Analysis Value
Similar to the voltage source, there are five independent
transient signal functions: pulse, exponential, sinusoidal,
piecewise linear, and single-frequency FM. The syntax for
these generators can be specified together with stimulus for the
other analysis types on a single dependent source line (See
voltage source examples). However, only one of the transient
signal generators can be selected for each source. Some of the
parameters in the transient signal generators must be entered,
while some of the parameters have defaults that are based on
the TSTEP and TSTOP values. The values of TSTEP and
TSTOP are defined in the .TRAN statement.

At least one
source must
have the
DISTOF1 and/
or DISTOF2
keywords in
order to perform
the distortion
analysis.

In the DC field
of the Current
Source
Properties
Dialog enter
i=expression.
Same as B
element except
no derivatives
are calculated.
No affect on AC
Analysis.
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ANALOG BEHAVIORAL MODELING

Analog Behavioral Modeling

The Analog Behavioral Model (ABM) capabilities in IsSpice4
give you the flexibility to describe electronic, mechanical, and
physical processes in terms of transfer functions.

The ABM features of IsSpice4 are implemented using either
linear dependent sources (keyletters E, F, G, or H) or the
nonlinear dependent source (keyletter B).

SPICE 2 Syntax Note: the SPICE 2 syntax for E, F, G, and H
elements, which provides nonlinear polynomial functions, is
compatible with IsSpice4, but is not described here. This
backward compatibility is made possible because IsSpice4
automatically converts the SPICE2 nonlinear polynomial syntax
to the IsSpice4 nonlinear dependent source syntax that is used
by the B element. Use of the B element is encouraged because
its syntax is much more flexible.

Linear sources are useful for creating linear functions of voltage
and current. The main features of the nonlinear dependent
source include:

• Nonlinear functions of voltage/current where the functions
can use trigonometric, transcendental, and algebraic
operators, system variables, and node voltages and device
currents in an equation-based format. The system variables
include Time, Temperature, and Frequency.

• Boolean logic expressions, which are useful for simulating
a variety of digital logic gates and functions.

• If-Then-Else expressions, which are useful for simulating
digital logic gates, limiters, comparators, and switches.

IsSpice4  is
compatible with
the SPICE 2
polynomial
syntax.
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Linear Dependent Sources

IsSpice4 allows circuits to contain linear dependent sources,
which are characterized by any of the four equations:

i = g * v, v = e * v, i = f * i, and v = h * i

where g, e, f, and h are constants representing
transconductance, voltage gain, current gain, and
transresistance, respectively.

Note: When using SPICE 2 polynomial syntax, avoid the use
of “0.0” as a coefficient. Only “0” should be used.

Voltage-Controlled Voltage Sources

Format: Ename N+ N- NC+ NC- value

Example: E1  3  4  2  1  1.5

The element name must start with the letter E. N+ and N- are
the positive and negative output nodes. NC+ and NC- are the
positive and negative controlling nodes. Value is the voltage
gain. The input to the voltage-controlled source has an infinite
impedance. It draws no current. The output voltage is computed
as follows:

Vout= value * Vin,

where V(N+,N-)=Vout and V(NC+,NC-)=Vin.

Current-Controlled Current Sources

Format: Fname N+ N- VName value

Example: F1  3  4  VCC  2M

The element name must start with the letter F. N+ and N- are

Note: in-line
equations can
not be used in
linear sources;
only in the
nonlinear
source.

IsSpice4 does
not require a
resistor to be
placed on the
input to a
voltage-
controlled
source, like
SPICE 2, in
order to satisfy
the requirement
of two
connections at
every node.



166

the positive and negative output nodes. Current flow is from the
positive node to the negative node. VName is the voltage
source whose current controls the output. VName must be the
same as the voltage source's reference designation. Value is
the current gain. The output current is computed as follows:

where I flowing from node N+ to N-=Iout and I(VName)=Iin.

Current-Controlled Voltage Sources

Format: Hname N+ N- VName value

Example: H1  3  4  VCC  2MΩ

The name must start with the letter H. N+ and N- are the positive
and negative output nodes. Current flow is from the positive
node to the negative node. VName is the voltage source whose
current controls the output. VName must be the same as the
voltage source's reference designation. Value is the
transresistance (in ohms). The output voltage is computed as
follows:

where V(N+,N-)=Vout and I(VName)=Iin.

Voltage-Controlled Current Sources

Format: Gname N+ N- NC+ NC- value

Example: G1 2  3  5  0  10000UMHOS

The name must start with the letter G. N+ and N- are the positive
and negative output nodes. Current flows from the positive
node to the negative node. NC+ and NC- are the positive and
negative controlling nodes. Value is the transconductance (in
mhos). The output current is computed as follows:

where I flowing from node N+ to N-=Iout and V(NC+,NC-)=Vin.

CURRENT CONTROLLED CURRENT SOURCES

Iout = value * Iin

Iout = value * Vin

Vout = value * Iin

Initial conditions
are not
accepted on
dependent
sources. Use
the .NODESET
and .IC
statements to
establish initial
values.
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Nonlinear Dependent Sources

Format: Bname  N+  N-   [I=Expr] [V=Expr]

Example: B1 0 1 I=cos(v(1)+sin(v(2))
B21 0 V=ln(cos(log(v(1,2)^2)))-v(3)^4+v(2)^v(1)
B3 1 2 I=17
B4 out+ out- V=exp(pi^i(vdd))

The nonlinear source must begin with the letter B. N+ and N-
are the positive and negative nodes, respectively. The values
of the V and I parameters determine the voltages and currents
across and through the device, respectively. There is no
distinction between current controlled and voltage-controlled
sources for the B element. If I= is given, then the device’s
output is a current source. If V= is given, the device’s output
is a voltage source. One and only one of these parameters
must be given.

AC Analysis Note: The small-signal AC behavior of the B
source is a linear dependent source with a gain constant that
is equal to the derivative(s) of the source at the DC operating
point. (See the Behavioral Modeling Issues section)

In-line Equations, Expressions, And Functions

The B source allows an instantaneous transfer function to be
written as a mathematical function using standard notation.
The expressions, [Expr], can use algebraic, transcendental,
or trigonometric functions, node voltages, device currents,
and frequency, time, and temperature. The expressions can
also be used on resistors, capacitors, inductors, and the R
and G model parameters of the lossy transmission line. The
output of the B source can be a voltage or current. The
following section covers the B element syntax that you can
use.
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IN-LINE EQUATIONS, EXPRESSION, AND FUNCTIONS

Analog Behavioral Functions, Part 1

Function Symbol/Description
abs(x) |x| absolute value
acos(x) cos-1(x) result in radians
acosh(x) cosh-1(x) result in radians
asin(x) sin-1(x) result in radians
asinh(x) sinh-1(x) result in radians
atan(x) tan-1(x) result in radians
atanh(x) tanh-1(x) result in radians
atan2(y,x) tan-1(y/x) result in radians
cos(x) cos(x) x in radians
cosh(x) cosh (x) x in radians
exp(x) ex exponential
expl(x,L) ex ex with limits
ln(x) ln(x) (log base e

Real variables consist of numbers, voltages, device currents,
and the key words “time”, “temp”, or “freq”. The following
operations and constants are defined:

+ - * / ^ unary - e, pi

If the argument of log, ln, or sqrt becomes less than zero, the
absolute value of the argument is used. If a divisor becomes
zero or the argument of log or ln becomes zero, an error will
result. Other problems may occur when the argument for a
function in a partial derivative enters a region where that
function is undefined.

Note: Do not use a plus sign (+) in front of positive numbers, for
this will be interpreted as an addition operation.

Advanced Analog Behavioral Functions
Several more complex functions have been added for use in
expressions. The operating point and transient behavior
(Description field) and small signal behavior (AC, Noise,
Distortion analyses) are summarized next.

The analog
behavioral
functions, as
shown in the
Function
column, can be
used in any B
element
expression.

The following functions of real variables are defined:

Function Symbol/Description
log(x) log(x) log base 10
max(x,y) Maximum of x and y
min(x,y) Minimum of x and y
pwr(x,y) |x|y

pwrs(x,y) +|x|y if x>0 -|x|y if x<0
sin(x) sin (x) x in radians
sinh(x) sinh(x) x in radians
sqrt(x) x1/2 square root
sinh(x) sinh(x) x in radians
sgn(x) sgn(x) signum, ± 1
stp(x) 1 if x>=0.0 0 if x<=0.0
tan(x) tan(x) x in radians
tanh(x) tanh(x) x in radians
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or R(x)

or IMG(x)

or M(x)
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d

or P(x)

Analog Behavioral Functions, Part 2
Function Description Small Signal Behavior

CEIL(x) smallest integer not less linearized as
than x or mag(x) if x is complex

FLOOR(x) largest integer not greater linearized as
than x or mag(x) if x is complex

INT(x) integer part of x or mag(x) linearized as
if x is complex

FRAC(x) fractional part of x or mag(x) linearized as
if x is complex

MOD2(x) floating-point remainder of linearized as
x/2 or mag(x)/2 if x is complex

SINC(x) sin(x)/x linearized as

MAG(x) magnitude of x linearized as

PHS(x) phase of x in degrees linearized as

REAL(x) real part of x linearized as

IMAG(x) imaginary part of x linearized as 0, i.e. no AC value

RAND(x) a random number between linearized as 0, i.e. no AC value
0 and x is generated every
time this function is called (i.e. every iteration)

RANDC(x) same as RAND(x), except linearized as 0, i.e. no AC value
that the first random number
generated will remain constant throughout the simulation
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Random Numbers and Waveforms
The random numbers generated by the Rand and Randc
functions use a uniform distribution. For random noise, use of
the PWL C code model will provide superior results. The PWL
code model allows standard PWL sequences to be repeated.
The PWL points are taken from an external file. This makes
stimulus data from other programs easily accessible. The PWL
code model also produces random noise, but has been written
so that it runs faster than the internal SPICE PWL source.

Additional Operators
A modulus operator can be used between any two variables
and/or constants in an expression. Its functionality in transient
and AC analysis is described below.

Expression Examples using Different Functions
b1 3 0 v = phs(1.0e3 / (freq+1k)) ; frequency gain block
L1 2 0 v = v(1) * int(rand(5.25)) ; randomly varying inductor
r1 2 3 r = 1000+1000 * exp(V(3)) ; voltage-controlled resistor
b1 3 0 v = (3.5 * v(2)+2.25) % (1.25*v(2)+2.0)
b1 2 0 v = int(mod2(v(1)))
b2 3 0 v = frac(mod2(v(1)))

STP Function
The unit step function can be used to suppress a value until a
given amount of time has passed. Ex, V(1)*STP(10ns-TIME)
gives a value of 0.0 until 10ns has passed and then give a value
of V(1).

Using branch currents in expressions
IsSpice4 expressions support two types of branch currents:

Currents through voltage source elements
a) Linear Independent Voltage Sources, V
b) Nonlinear dependent sources (with V=), B
c) Voltage-controlled Voltage Sources, E
d) Current Controlled Voltage Sources, H

Operator Description AC Analysis

x % y floating-point remainder linearized as

of x/y or mag(x)/mag(y) if x and/or y are complex

IN-LINE EQUATIONS, EXPRESSION, AND FUNCTIONS

)%()()( yxy
dx
dx

dx
d







 +
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Currents through non-voltage source elements
a) Capacitors, C
b) Current Controlled Current Sources, F
c) Current Controlled Switches, W
d) Diodes, D
e) Inductors, L
f) Resistors, R
g) Voltage-controlled Switches, S
h) Voltage-controlled Current Sources, G

Expression Examples using Currents
b3 5 0 v = 1p + (i(c1) / (freq * 1U))^2
b1 3 0 I = log(i(g1)) * exp(i(r1))
b1 2 0 v = i(d1)

c1 2 0 c = exp(v(1)) * i(c2)
r7 4 5 r = 1k + 1k * i(vin)
L2 5 0 L = 0.1u + 0.1m * i(r1)

Using Time, Frequency, and Temperature in Expressions

You can now specify simulation time, simulation frequency
and/or circuit temperature as a variable in an expression. The
keyword TIME specifies the instantaneous time, FREQ specifies
the current AC analysis frequency, and TEMP specifies the
temperature as listed in the .OPTIONS TEMP= value (default
=27). The effects of these variables in transient and AC analysis
are summarized below.

Variable Description
TIME Current simulator time in seconds, 0 in the AC analysis
FREQ Current simulator frequency in radians,

0 in the Transient analysis
TEMP Circuit temperature in degrees C as specified in the

.OPTIONS statement; default = 27, same for both
the AC and Transient analyses
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USING TIME, FREQUENCY, AND TEMPERATURE IN EXPRESSIONS

Expression Examples using Temp, Time, and Freq
b1 3 4 I = 2.0 * v(1)^0.5 + 3.0*v(2)*time + v(2)*sqrt(temp)
b2 2 0 V = 6.283e3/(freq+6.283e3)
b1 1 0 V = time * V(10)

rt 1 2 r= 1.0e3 + 1.0e3 * sqrt(time) + 2.0 * log(temp)
R1 2 0 R=1 + 1K * int(TIME)

Lte 1 2 r= 10u + 1n * sqrt(mag(Freq)) * sqrt(temp)
c2 2 0 c =1u + 1p * sqrt(mag(Freq)) + 1.0e-6 * log(temp)

Time Subcircuit
To get time into an expression or represented as a node voltage
for other purposes, you can also integrate the current from a
constant current source with a capacitor and use the resulting
voltage to represent time. Don’t forget to set the initial voltage
across the capacitor and use UIC in the .TRAN statement. For
example, node Tvalue = time:

I1  0  Tvalue  1
C1  Tvalue  0  1  IC=0
R1 Tvalue 0 1E12

Behavioral Modeling Issues

Element Values
If you use current or voltage to control the value of a component,
you need to be careful to first have a default value so if the
controlling value is 0, then the component value will not be 0.
For example,

R1 1 2 r = I(vin) * 100 should be
R1 1 2 r = 50 + I(vin) * 100

If R1 1 2 r = I(vin) * 100 is used and the current in VIN is zero,
then the error message “R1 set to 1000” will be issued and the
value of R1 will be set to 1K. Whenever the current in Vin
becomes nonzero, then the value of R1 will change appropriately.
The same goes for use of the time and freq variables. For the
AC analysis, the output of b1, b1 1 0 V = time * V(10), is zero.
A more appropriate usage might be b1 1 0 V = 1+ time * V(10)

Note: Use
Mag(Freq)
when using
FREQ in an If-
Then-Else
expression.
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Division
Be careful when performing division. Care should be taken to
prevent the denominator from becoming zero, otherwise a non-
convergence may result. For example, in B4 7 8 I=V(2) / V(4),
if V(4) should become zero during the DC operating point or
transient analysis, the circuit may fail to converge.

Exponential With Limits
Frequently, as in the above B element, an exponential function
is required. In order to keep the value of the exponential from
becoming too large and causing convergence problems, a
special exponential function has been included in IsSpice4,
EXPL. The format is EXPL(function,limit_value). For example:
B1 1 0 v= expl(v(3),50) will produce an output voltage that is
exponential until v(3)=50. Above 50, the output of the B element
will become a straight line.

Branch Currents
IsSpice4 expressions support two types of branch currents:
currents through voltage source elements, and currents through
non-voltage source elements (shown previously). The main
difference between these two groups is that the currents
through voltage source elements are added as a circuit variable
to the circuit equations, and are calculated along with the node
voltages. However, the currents through non-voltage source
elements are not added to the circuit equations as an
independent variable, mainly to keep the matrix small, reduce
memory usage, and reduce simulation time. For example, the
current through a resistor at each iteration can easily be
calculated from the corresponding node voltages and the
resistance value. There is no need to add this current to the
circuit equations as an independent variable.
The only restriction for performing a transient analysis is that if
you want to use currents as variables, you must use current
through a voltage source to achieve accurate results. If you use
current through other elements, then you will get a warning that
the results may be inaccurate.
You cannot perform an AC analysis on an expression containing
circuit variables. Otherwise, unexpected results will be produced.
AC analysis on expressions is made successful only when
such expressions exclusively contain FREQ, TIME, TEMP or
math functions - not circuit variables.
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Voltage Controlled Oscillator
It’s convenient to model an oscillator using a behavioral expression:

V = sin(2*pi*v(F)*time)
But, if v(F) is a variable, the interpretation is incorrect as shown below.

As the controlling voltage sweeps from 1 volt (1MegHz) to 1.1
volts (1.1MegHz), the resulting waveform at vout has high
frequency oscillation. But that follows the equation exactly! What
we really wanted was to define the output as the sine of phase. By
doing that you get the correct interpretation shown as voutgood.

Voltage Variable Capacitor
In figure below, we want to make a capacitor change value at a
particular voltage. That can model the behavior of a MOS transistor
as its gate to drain voltage crosses threshold. The proper interpretation
should use charge, not capacitance. When the capacitance value is
changed, a voltage discontinuity occurs. If charge is controlled, the
expected result is achieved, that is, V = Q / C.  A similar argument can
be made for making an inductor vary as a function of current. The

integral of voltage, flux, needs to be used or  I Vdt L= Ú / .

BEHAVIORAL MODELING ISSUES

Note: A voltage
controlled
oscillator gives
unexpected
results if
frequency is used
as a variable
instead of phase;
phase continuity
is required.

parameters
pi=4*atan(1)
F=1Meg
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Nonlinear Elements

In addition to the expressions feature, nonlinear capacitors,
resistors, and inductors may be created with the B element.
Nonlinear resistors are obvious. Nonlinear capacitors and
inductors are implemented with their linear counterparts by a
change of variables implemented with the nonlinear dependent
source. The following subcircuit will implement a nonlinear
capacitor:

.Subckt  Nonlinear cap  pos  neg
Bx 1 0 v=f(v(pos,neg)) ; calculate f(input voltage)
Cx 2 0 1 ; linear capacitance
*Vx: Ammeter to measure current into the capacitor
Vx 2 1 DC 0Volts
*Drive the current through Cx back into the circuits
Fx pos neg Vx 1
.Ends

For example, a sigmoidal capacitance characteristic could be
described by the following:

.SUBCKT MISD 1 2 3 {M=2 VT=3}
* Anode   Cathode    Charge Test Point
B2  4 0 V= V(1,2) *1/( 1 + exp^({M} * (V(2,1) + ({VT}))))
V1  4 3 0
C1  3 0 {CO}
F1  1 2 V1 1
.ENDS

Nonlinear inductors are similar. Several nonlinear resistor
examples are shown in the Switches section.

Note: Nonlinear resistors, capacitors, and inductors can also
be generated, in some cases more easily, by putting the
expression directly on the element line. For example:

C1 3 0   C = {Co} * 1/( 1 + exp^({M} * (V(2,1) + ({VT})))
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Boolean Logic Expressions

Format: Bname  N+  N-   [V=Expr]

Example: b1 4 0 v = ~(v(1) & v(2) & v(3))
B1 invout 0 v= ~v(2)
b1 3 4 v = v(1) | v(2)

The nonlinear dependent source element may be used to
create models of digital logic functions. This is accomplished by
including Boolean operators in the [Expr] function.

The expression [Expr] may consist of Boolean operators and
any of the functions in the Analog Behavioral Functions section.
There is virtually no limit to the length or complexity of the
expressions that can be used. The following operations are
defined for the Boolean logic options:

& - And     | - Or     ~ - Not

There are three .OPTIONS parameters that control the default
threshold and logic 1/0 output levels. They are:

Lone Value for logic one default =3.5
Lzero Value for logic zero default=.3
Lthresh Value for logic threshold default=1.5

For example: .OPTIONS LONE=5  LZERO=0 LTHRESH=2.5
would reset the logic one level to 5V, logic zero to 0 volts, and
the logic threshold to 2.5V.

The expression is evaluated at each internal time point and if
the result is greater than the threshold (Lthresh), the output
voltage is set to a logic one (Lone). If the result is less than the
threshold, the output voltage is set to a logic zero (Lzero).

AC Analysis Note: The small-signal AC behavior of the
Boolean expression is a linear dependent source, or sources,
with a proportionality constant that is equal to the derivative (or
derivatives) of the source at the DC operating point.

.OPTIONS
parameters
control the
default logic
levels.

The examples
describe a 3-
input Nand
gate, an
inverter, and a
2-input Or gate.

The  derivative
of a boolean
function is
taken as zero.
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Caution: Digital Logic With Feedback
The Boolean logic expressions are ideal delay-free functions.
When creating digital functions, you should keep this in mind
and add realistic delays wherever possible. In circuits with
feedback, it is almost always necessary to add a delay to each
gate. Otherwise, the continuously evaluated Boolean
expressions may not converge to a solution. Initial conditions
may also be needed in order to properly initialize bistable
circuits. The IC= keyword on the capacitor, the .IC command,
and the UIC keyword in the .TRAN statement are used for this
purpose. For example, see the following D Flip-Flop circuit.

To add delay to a gate, insert an RC combination to the output.
This will give the gate some rise/fall time and delay. For
example:

b1 4 0 v = v(1) & v(2) 2-Input And
r1  4 0 1 RC Delay
c1 4 0 .87nF IC=0 IC = Optional Initial Condition

Note: If you set up a series of gates as subcircuits, you can use
the parameter passing feature to pass initial conditions to the
gate.

Example: Flip-Flop
DFLOP
.TRAN .25U 10U
*ALIAS  V(1)=VQ
*ALIAS  V(2)=VQN
.PRINT TRAN  V(1)  V(2)  V(3)  V(10)  V(12)
X4 1 7 6 2 NAND3 {IC=0}
X6 4 5 2 1 NAND3 {IC=1}
X7 8 7 12 3 NAND3 {IC=1}
X8 4 9 3 8 NAND3 {IC=0}
X9 10 7 2 9 NAND3 {IC=1}
X10 3 12 9 10 NAND3 {IC=0}
VCLK 12 0 3.5 PULSE 3.5 0 0 0 0 1U 2U
V6 7 0 PULSE 0 3.5
V4 4 0 3.5
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*Flip-Flop CONTINUED
V7 3 5 -.25
V8 10 6 -.25
.subckt nand3 1 2 3 4
b1 44 0 v = ~(v(1)&v(2)&v(3))
r 4 44 1
c 4 0 100n IC={IC}
.ends
.end

Caution: Internal Time Step Aliasing
Digital gate models in IsSpice4 have a continuous output. This
is different from the discontinuous output that is seen in logic
simulators. The Boolean functions are evaluated on a continuous
basis, but since they do not have any inherent capacitive
delays, they do not contribute to IsSpice4's control of the time
step. And, since the internal time step in IsSpice4 occurs at
varying intervals, it may be necessary to clamp down on the
timestep in order to see the exact time that a switching transition
occurs.

To make sure the timestep does not get too large

• Include the TMAX parameter in the .TRAN statement.

It is difficult to give an estimate of what percentage of the
TSTEP value the TMAX value should have. It will be different
for different circuit topologies. However, setting the TMAX
value from 1/10 to 1/2 of the TSTEP value will typically provide
adequate resolution if enough data points are taken.

For example: Run the A-to-D circuit in the If-Then-Else section
with and without the TMAX parameter.
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If-Then-Else Expressions

Format:
Bname  N+  N- V=EVALUATION ? OUTPUT_VALUE1 or EXPRESSION  :
OUTPUT_VALUE2 or EXPRESSION

More Simply:
Bname  N+  N-  V=if EVALUATION is true then v(N+,N-)=OUTPUT_VALUE1
else v(N+,N-)=OUTPUT_VALUE2

Note: Spaces should be included before and after the “?” and
“:” symbols. Also, V= may be substituted with I=.

The [Expr] field in the nonlinear dependent source element may
be inserted with an If-Then-Else clause that has a wide variety
of uses.

EVALUATION, OUTPUT_VALUE, and EXPRESSION may
consist of any combination of the functions or operators listed
in the In-line Equations and Functions section or boolean
operators. There is virtually no limit to the length or complexity
of the expressions that can be used.

The EVALUATION expression can use greater than “>” or less
than “<” test. Equal is not allowed.

Extended “If-then-else” expressions can also be used. For
example:

Bname  N+  N-  V=if EVALUATION1 is true then if EVALUATION2 is true
v(N+,N-)=OUTPUT_VALUE1 else v(N+,N-)=OUTPUT_VALUE2

Bname  N+  N- V=if EVALUATION1 is true then v(N+,N-)=OUTPUT_VALUE1
else if EVALUATION2 is true v(N+,N-)=OUTPUT_VALUE2: else
OUTPUT_VALUE3

AC Analysis Note: The small-signal AC behavior of the
nonlinear source is a linear dependent source (or sources) with
a proportionality constant equal to the derivative (or derivatives)
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of the source at the DC operating point. The If-then-else
function does not have a derivative. However, the output
expression or function selected by the If-then-else test is
differentiated.

If-Then-Else Examples
3 input nand gate with user defined levels
b1 4 0 v=v(1) > 1.5 ? v(2) > 1.5 ? v(3) > 1.5 ? 0.3 : 3.5
If v(1) is greater than 1.5 then if v(2) is greater than 1.5 then if
v(3) is greater than 1.5 then v(4)=0.3 else v(4)=3.5

Limiter
b1 2 0 v=v(1) < .5  ?  v(1)*.5 + .25 : v(1) > 1.53 ? 1.54 : v(1)
If v(1) is less than .5 then v(2)=v(1)*.5+2.5 else if v(1) is greater
than 1.53, then v(2)=1.54 else v(2)=v(1)

Comparator
b1 3 0 v=v(1,2) < 0  ?  5 : .1
If voltage difference v(1)-v(2) is less than 0, then v(3)=5V, else
v(3)=.1V

Switch
b1 2 0 v=v(vctrl) < 0  ?  v(3) : v(4)
If vctrl is less than 0, then v(2)=v(3), else v(2)=v(4)

If-Then-Else Examples Using Behavioral Modeling Functions
r1 3 5 r = abs(v(2)) > 0 ? abs(v(2)) : 1
rin 1 2 r = v(3,4) > 1 ? 1K * (1+rand(2.0)) : 1K * (1+rand(2.0))
L1 1 2 L = I(r1) > 1 ? 1K : 250 * log(temp)
cin 2 0 c = abs(v(3)) > 1 ? 0.1U : 1U * log(temp)

Example: A-D Converter Circuit
A to D converter test
vin 1 0 pulse 0 2 0 1u 0 1u
.tran 10n 1u  0 1n
x1 1 2 10 adc
x2 2 3 11 adc
x3 3 4 12 adc
x4 4 5 13 adc
x5 5 6 14 adc
x6 6 7 15 adc

Note: Use
Mag(Freq)
when using
FREQ in an If-
Then-Else
expression.
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x7 7 8 16 adc
x8 8 9 17 adc
.print tran v(10) v(11) v(12) v(13) v(14) v(15) v(16) v(17)
.print tran v(1) v(2) v(3) v(4) v(5) v(6) v(7) v(8)
.subckt adc in out bin
b1 bin 0 v= (v(in) > 1) ? 1 : 0
b2 out 0 v= 2 * (v(in) - v(bin))
.ends
.end

The A-to-D module consists of :
.subckt adc in out bin <- Input, Output, Binary level
b1 bin 0 v= (v(in) > 1) ? 1 : 0 <- Test - if v(in) is greater

than 1, then binary output
bin=1, else bin=0

b2 out 0 v= 2*(v(in) - v(bin)) <- Output of A-to-D subcircuit
.ends = 2 * (v(in)-v(bin))

Device Models Statements

The passive elements described thus far typically require only
a few parameter values. Even those devices that use a .MODEL
statement (resistor, capacitor, lossy transmission line) can be
defined with a simple set of parameters. However, code models
and semiconductor devices included in IsSpice4 require many
parameter values to describe their behavior. Often, the same
device may be used in several places in the circuit. For these
reasons, model parameters that describe a semiconductor are
defined on a separate .MODEL line.

The use of a semiconductor, or code model requires two steps.
First, each device must be called. The calling statement starts
with the device’s keyletter and reference designation name,
then the nodes to which the device is connected, and finally the
device’s model name. The second step uses a .MODEL
statement to define the parameters that describe the device.
The model name is used to link the device call line with its
respective .MODEL definition statement. This scheme alleviates
the need to specify all of the model parameters on each device
call line.

The model
parameters
associated with
Code Models
are described in
the next
chapter.
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Other optional parameters may be specified on the calling line
for some devices. These include geometric factors and initial
conditions.

The area factor, available on some semiconductor call lines,
determines the number of equivalent parallel devices of the
specified model. Not all of the model parameters are affected.
The affected parameters are marked under the heading ‘area’
in the following model parameter tables with either an asterisk,
if the area multiplies the parameter value, or a / sign, if the area
divides the parameter value. For the MOSFET call line, several
geometric factors associated with the channel and the drain
and source diffusions maybe specified.

Two different forms of initial conditions may be specified for
some devices. The first form is included to improve the DC
convergence for circuits that contain more than one stable
state. If a device call line contains the OFF keyword, then the
DC operating point is determined with the terminal voltages for
that device set to zero. After convergence is obtained, the
program continues iterating to obtain the exact value for the
terminal voltages. If a circuit has more than one stable DC state,
the OFF keyword can be used to force the solution to correspond
to a desired state. If a device is specified OFF when the device
is conducting, the program will still obtain the correct solution
(assuming the solutions converge) but additional iterations will
be required since the program must independently converge to
two separate solutions. The .NODESET line serves a purpose
similar to the OFF option. The .NODESET statement is easier
to apply and is the preferred means to aid convergence,
although it does require the specification of a voltage value,
whereas the OFF keyword does not.

The second form of initial conditions are for use with the
transient analysis. These are true ‘initial conditions’, as opposed
to the convergence aids above. When issued along with the
UIC keyword in the .TRAN statement, the IC= values will be
used for the terminal voltages with which the transient analysis
will start. See the description of the .IC line and the .TRAN line
for a detailed explanation of initial conditions.
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.Model Statement

Format: .MODEL modname TYPE(pn1=pv1 pn2=pv2..)

Examples: .MODEL MOD1 NPN (BF=50 IS=1E-13 VAF=50)
.MODEL CONNECT LTRA (R=0.2
+ L=9.13nC=3.65pF LEN=5 STEPLIMIT
+ REL=2 COMPACTREL=1.0e-4)

The .MODEL line specifies a set of model parameters that are
referenced by one or more element statements. Modname is
the model name used to connect the .MODEL statement to the
calling element. Model names may begin with a number, but it
is best to follow the SPICE 2 convention of beginning a model
name with the same letter as the calling element (e.g. D for
Diode, Q for BJT).

TYPE is one of the following types:

Type Keyletter Device
C C Capacitor
R R Resistor
CSW W Current-controlled switch
SW S Voltage-controlled switch
LTRA O Lossy RLCG transmission line
URC U Uniformly Distributed RC/RD T-line
D D Diode
NJF J N-channel JFET
PJF J P-channel JFET
NMOS M N-channel MOSFET
PMOS M P-channel MOSFET
NPN Q NPN BJT
PNP Q PNP BJT
NMF Z N-channel MESFET
PMF Z P-channel MESFET

Parameter values are defined by appending the parameter
name, as given with each model type, followed by an equal sign
and the parameter value. Model parameters that are not given
a value are assigned the default values.

Note: this list
does not
contain the
code model
‘types’ that are
described in the
next chapter.
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The format used to call a device and define its behavior is:

General Format: Device Call Statement
.Model Definition Statement

Format: Keylettername Node Numbers modelname
.MODEL modelname TYPE (parameters)

For example, to call a diode, we would use the statement:

D1 1 0 DN4148

To define the D1 element, we would use the statement:

.MODEL DN4148 D(RS=.8 CJO=4PF IS=7E-09 N=2
+ VJ=.6V TT=6E-09 M=.45 BV=100V)

Notice how the model name DN4148 links the calling statement
with the definition. Also, note that the model name does NOT
define what kind of element the device is calling. For example,
just because a Q1 element has a model name of 2N2222, that
does not mean that the Q1 device is an NPN BJT. The type must
say NPN. An element is defined by the type value and the model
parameter values.

For some devices, the method of defining the type of device
with the TYPE parameter is redundant. For example, the diode
call above can only have one type, D. Any other type value will
be considered an error. For a Q keyletter, however, either a
PNP or an NPN type is acceptable. Once a keyletter is used to
call a model name, the type must agree, otherwise, an error will
result.

Diodes
Format: Dname NA NC modname [area] [OFF] [IC=vd ]

+ [TEMP=t ] [M=value]

Examples: DBRIDGE 2 10 DIODE1 OFF
DCLMP 3 7 DMOD 3 IC=0.2V TEMP=50
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Node NA is the anode and node NC is the cathode. Modname
is the model name, area is the area factor (default 1.0), and OFF
indicates an (optional) initial condition on the device for DC
analysis. The (optional) initial condition specification using IC
=vd, the voltage across the diode, is intended for use with the
UIC option. It should be used when you desire a specific
starting condition, other than the operating point value, at the
beginning of the transient analysis. The (optional) TEMP value
is the temperature at which this device is to operate, and
overrides the temperature specification in the .OPTIONS
statement.
M is the multiplicity factor that simulates parallel devices.

Diode Model Parameters
Name Parameter Units Default Example Area

IS saturation current A 1.0e-14 1.0e-14 *

RS ohmic resistance Ω 0 10 /
N emission coefficient - 1 1.0
TT transit-time sec 0 0.1Ns
CJO zero-bias junction capacitance F 0 2pF *
VJ junction potential V 1 0.6
M grading coefficient - 0.5 0.5
EG activation energy eV 1.11 1.11 Si

0.69 Sbd
0.67 Ge

XTI saturation-current temp. exp. - 3.0 3.0 jn
2.0 Sbd

KF flicker noise coefficient - 0
AF flicker noise exponent - 1
FC coefficient for forward-bias - 0.5

depletion capacitance formula
BV reverse breakdown voltage V • 40.0
IBV current at breakdown voltage A 1.0e-3 *
TNOM parameter measurement temp. deg C 27 50
IBVL lowlevel reverse breakdown A 0

knee current
IKF high-injection knee current A •
ISR recombination current parameter A 0
NBV reverse breakdown ideality factor - 1
NBVL low-level reverse breakdown - 1

ideality factor
NR emission coefficient for isr - 2

See  the
“Working with
Model Libraries”
book for the
diode's
equations.
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The diode is modeled using an ohmic resistance in series with
a diode. The DC characteristics of the diode are determined by
the parameters IS, N and RS. Charge storage effects are
modeled by a transit time, TT, and a nonlinear depletion layer
capacitance, which are determined by the parameters CJO,
VJ, and M . The temperature dependence of the saturation
current is defined by the parameters EG, the energy gap, and
XTI, the saturation current temperature exponent. Reverse
breakdown is modeled by an exponential increase in the
reverse diode current and is determined by the parameters BV
and IBV (both are positive numbers).

Sample Models:

.MODEL DN4001 D (Is=5.86E-06 N=1.70 Bv=6.66E+01
+ IBV=.5u RS=36.2m Cjo=5.21E-11 Vj=.34 M=.38 TT=5.04u)
* 50 Volt   1.00 Amp   3.50 us  Si Rectifier   Diode  07-01-1990

.MODEL  DN753  D(RS=4.68   BV=6.10   CJO=346P TT=50N
+ M=.33  VJ=.75  IS=1E-11  N=1.27  IBV=20MA)
* 1N753, 6.2 Volt Zener Diode

Bipolar Junction Transistors

Format: Qname NC NB NE [NS] modname [area] [OFF]
+ [IC=vbe,vce] [TEMP=t] [M=value]

Examples: Q23 10 24 13 QMOD IC=0.6,5.0
Q50A 11 26 4 20 MOD1

All transistor calls begin with the letter Q. NC, NB, and NE are
the collector, base, and emitter nodes, respectively. NS is the
(optional) substrate node. If unspecified, ground is used.
Modname is the model name, area is the area factor, and OFF
indicates an (optional) initial condition on the device for the DC
analysis. If the area factor is omitted, a value of 1.0 is assumed.
The symbols * or /, in the area column, indicate whether the
parameter is multiplied or divided by the area. The (optional)
initial condition specification, using IC =vbe,vce, is intended for

See the
Working with
Model Libraries
book for BJT
equations.

The symbols *
or /, in the area
column,
indicate
whether the
parameter is
multiplied or
divided by the
area.
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use with the UIC option on the .TRAN statement. It should be
used when you desire a specific initial condition, other than the
operating point value, at the beginning of the transient analysis.
The (optional) TEMP value is the temperature at which this
device is to operate, and overrides the temperature specification
in the .OPTIONS statement.

M is the multiplicity factor that simulates parallel devices.

The BJT Model
The bipolar junction transistor model in IsSpice4 is an adaptation
of the integral charge control model of Gummel and Poon. This
modified Gummel-Poon model extends the original model to
include several effects at high bias levels. The model will
automatically simplify to the Ebers-Moll model when certain
parameters are not specified.

The BJT parameters used in the modified Gummel-Poon
model are listed below. The parameter names used in earlier
versions of SPICE are still accepted.

BJT Model Parameters

Name Parameter Units Default Example Area

IS transport saturation current A 1e-16 1e-15 *
BF ideal maximum forward beta - 100 200
NF forward current emission - 1.0 1.75

coefficient
VAF forward Early voltage V • 200
IKF corner for forward beta high A • 0.01 *

current roll-off
ISE B-E leakage saturation current A 0 1e-13 *
NE B-E leakage emission coefficient - 1.5 2
BR ideal maximum reverse beta - 1 0.1
NR reverse current emission - 1 1

coefficient
VAR reverse Early voltage V •◊ 200
IKR corner for reverse beta high A • 0.01 *

current roll-off
coefficient

The * or /
symbols in the
area column
indicate
whether the
parameter is
multiplied or
divided by the
area.
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Ω

BJT Model Parameters, continued

ISC B-C leakage saturation current A 0 1e-13 *
NC B-C leakage emission - 2 1.5

RB zero bias base resistance Ω 0 100 /

IRB current where base resistance A • 0.1 *
falls halfway to its min value

RBM minimum base resistance at Ω RB 10 /

high currents

RE emitter resistance Ω 0 1 /

RC collector resistance 0 10 /
CJE B-E zero-bias depletion F 0 2pF *

capacitance
VJE B-E built-in potential V 0.75 0.6
MJE B-E junction exponential factor - 0.33 0.5
TF ideal forward transit time sec 0 0.1ns
XTF coefficient for bias dependence - 0

of TF
VTF voltage describing VBC V •

dependence of TF
ITF high-current parameter for A 0 *

effect on TF
PTF excess phase at degrees 0

freq=1/(TF*2p) Hz
CJC B-C zero-bias depletion F 0 2pF *

capacitance
VJC B-C built-in potential V 0.75 0.5
MJC B-C junction exponential factor - 0.33 0.5
XCJC fraction of B-C depletion - 1

capacitance connected to
internal base node

TR ideal reverse transit time sec 0 10nS
CJS zero-bias collector-substrate F 0 2pF *

capacitance
VJS substrate junction built-in V 0.75

potential
MJS substrate junction exponential - 0 0.5

factor
XTB forward and reverse beta - 0

temperature exponent
EG energy gap for temperature eV 1.11

effect on IS
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BJT Model Parameters, continued

See the .IC line
description for a
better way to
set transient
initial
conditions.

XTI temperature exponent for - 3
effect on IS

KF flicker-noise coefficient - 0
AF flicker-noise exponent - 1
FC coefficient for forward-bias - 0.5

depletion capacitance formula
TNOM parameter measurement temp. °C 27 50

The DC response is defined by the parameters IS, BF, NF, ISE,
IKF, and NE, which determine the forward current gain
characteristics. The parameters IS, BR, NR, ISC, IKR, and NC
determine the reverse current gain characteristics. VAF and
VAR determine the output conductance for the forward and
reverse regions. Three ohmic resistances RB, RC, and RE are
available. RB can be current dependent using the IRB and RBM
parameters. Base charge storage is modeled by forward and
reverse transit times, TF and TR. The forward transit time TF
can be bias dependent, using the XTF, VTF, and ITF parameters.
Nonlinear depletion layer capacitances are determined by
CJE, VJE, and MJE for the B-E junction, CJC, VJC, and MJC
for the B-C junction and CJS, VJS, and MJS for the C-S
junction. The temperature dependence of the saturation current,
IS, is determined by the energy-gap, EG, and the saturation
current temperature exponent, XTI. Additionally, base current
temperature dependence is modeled by the beta temperature
exponent, XTB.

.MODEL QN2222 NPN (IS=15.2F NF=1 BF=105 VAF=98.5
+ IKF=.5 ISE=8.2P NE=2 BR=4 NR=1 VAR=20 IKR=.225
+ RE=.373 RB=1.49 RC=.149 XTB=1.5 CJE=35.5P CJC=12.2P
+ TF=500P TR=85N)
*   30 Volt  .8 Amp  300 MHz  SiNPN  Transistor

.MODEL QN2904 PNP (IS=381F NF=1 BF=51.5 VAF=113
+ IKF=.14 ISE=46.1P NE=2 BR=4 NR=1 VAR=20 IKR=.21
+ RE=.552 RB=2.21 RC=.221 XTB=1.5 CJE=15.6P CJC=20.8P
+ TF=636P TR=63.7N)
*   40 Volt  .6 Amp  250 MHz  SiPNP  Transistor
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Calls to the JFET begin with the letter J. ND, NG, and NS are
the drain, gate, and source nodes, respectively. Modname is
the model name, area is the area factor, and OFF indicates an
(optional) initial condition on the device for DC analysis. If the
area factor is omitted, a value of 1.0 is assumed. The symbols
* or / in the area column indicate whether the parameter is
multiplied or divided by the area. The (optional) initial condition
specification, using IC=vds, vgs, is intended for use with the
UIC option on the .TRAN line. It should be used when you
desire a specific starting condition, other than the operating
point value, at the beginning of the transient analysis. The
(optional) TEMP value is the temperature at which the device
operates, and overrides the .OPTIONS TEMP value.

M is the multiplicity factor that simulates parallel devices.

JFET Models
There are two models associated with the JFET. The Berkeley
JFET model is derived from the FET model of Shichman and
Hodges. The DC characteristics are defined by the parameters
VTO and BETA, which determine the variation of drain current
with gate voltage. LAMBDA determines the output conductance
and IS the saturation current of the two gate junctions. Two
ohmic resistances, RD and RS, are included. Charge storage
is modeled by nonlinear depletion layer capacitances for both
gate junctions, which vary as the -1/2 power of junction voltage
(M fixed at .5), and are defined by the parameters CGS, CGD,
and PB. A new doping profile parameter, B, was added in
SPICE 3F. The JFET can also emulate a GaAs MESFET
depending on the parameters used. The Parker-Skellern model
was developed by Macquarie University in Sydney Australia. It
contains several new model parameters that provide greatly
improved DC, AC, and transient performance. See ref. 10-1,
10-2, and 10-3.

JUNCTION FIELD-EFFECT TRANSISTORS

See the
description of
the .IC line for a
better way to
set initial
conditions.

See Working
with Model
Libraries book
for the JFET
equations.

Junction Field-Effect Transistors

Format: Jname  ND NBG NS modname [area] [OFF]
[IC=vds,vgs] [TEMP=t]

Examples: J1 7 2 3 JM1 OFF
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JFET Model Parameters

Name Parameter Units Default Example Area

Basic DC Parameters
B doping profile parameter** - 1 1.1
BETA transconductance parameter A/V2 1e-4 1e-3 *
DELTA coef of thermal current 1/W 0 5 /

reduction*
IBD breakdown current of diode A 0 1e-7 *

junction*
IS gate junction saturation A 1e-14 1e-12 *

current
LAMBDA channel length modulation 1/V 0 0.05

parameter
LFGAMMA drain feedback parameter* 1/V 0 0.01
MXI saturation potential - 0 0

modulation*
N gate junction ideality factor* - 1 1.5
P power law (triode region)* - 2 2.4
RD drain ohmic resistance 0 2.5 /
RS source ohmic resistance 0 2.5 /
VBD breakdown potential of diode V 1 3

junction*
VST critical potential for V 0.025 0.12

subthreshold conduction*
VTO threshold voltage V -2.0 -2.5
XI velocity saturation index* - 1e+3 0.3
Z exponent of velocity sat. - 2 2

formula*
Charge Storage Parameters
CGS zero-bias G-S junction F 0 5pF *

capacitance
CGD zero-bias G-D junction F 0 1pF *

capacitance
PB gate junction potential V 1 0.6
FC coefficient for forward-bias - 0.5

depletion capacitance formula
XC amount of cap. reduced at - 0 0.2

pinch-off*
(used when CMOD=2)

CMOD select capacitance model to - 1 2
use*
(1=Berkeley JFET, 2=Statz model)

Ω
Ω
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GAAS  FIELD-EFFECT TRANSISTORS

See the
Working with
Model Libraries
book for the
MESFET
equations.

Frequency Dependent Parameters
HFGAMMA high freq. drain feedback 1/V 0 0.08

parameter*
TAU drain feedback relaxation sec 0 0.001

time*
TAUD thermal relaxation time* sec 0 1e-6
Temperature/Noise Parameters
TNOM parameter measurement degC 27 50

temperature
KF flicker noise coefficient - 0 1e-15
AF flicker noise exponent - 1 1

** Berkeley SPICE 3F parameters, * Parker-Sekellern MESFET parameters;
Macquarie University, See references [10-1,2, and 3] for more information about the
Macquarie MESFET model parameters.

.MODEL BF510 NJF (VTO=-.8 BETA=2.8M LAMBDA=15.5M
+ RD=4.04 RS=3.63 IS=11.8F PB=1 FC=.5 CGS=8.95P
+ CGD=995F)
* 20 Volt  30M Amp  28.8 ohm  Dep-Mode N-Channel J-FET
.MODEL J175 PJF (VTO=-4.90 BETA=3.6M LAMBDA=6.89M
+ RD=14 RS=14.6 IS=3.51F PB=1 FC=.5 CGS=12.5P
+ CGD=16.5P KF=5.3434E-16 AF=1)
* 45 Volt  20M Amp  100 ohm  Dep-Mode P-Channel J-FET

GaAs Field Effect Transistors - MESFETs

Format: Zname ND NG NS modname area] [OFF]
[IC=vds, vgs] [M=value]

Examples: Z1  1 7 2 ZM1 OFF

Calls to the MESFET begin with the letter Z. ND, NG, and NS
are the drain, gate, and source nodes, respectively. Modname
is the model name, area is the area factor, and OFF indicates
an (optional) initial condition on the device for DC analysis. If the
area factor is omitted, a value of 1.0 is assumed. The symbols
* or / in the area column indicate whether the parameter is
multiplied or divided by the area. The (optional) initial condition
specification, using IC=vds, vgs, is intended for use with the
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UIC option on the .TRAN line. It should be used when you
desire a specific initial condition, other than the operating point
value, at the beginning of the transient analysis. See the
description of the .IC line for a better way to set initial conditions.

M is the multiplicity factor that simulates parallel devices.

The MESFET Models
IsSpice4 contains several MESFET models, each differentiated
by the Level parameter.

LEVEL = 1 -> Statz Model,  reference [10-10], Default Level
LEVEL = 2 -> Anadigics Corp. “NICE” MESFET Model
LEVEL = 3 -> HEMT Model,  Maquarie University [10-13, 10-14]
LEVEL = 4 -> HEMT2 Model,  Maquarie University
LEVEL = 5 -> Curtis-Ettenburg GaAs Model

Level 1 is derived from the GaAs FET model of Statz and is the
same as in Berkeley SPICE 3. It is the default model level
selected if no level=# model parameter is detected. It is modeled
as an intrinsic FET with ohmic resistances in series with the
drain and source. The DC characteristics are defined by the
parameters VTO, B, and BETA, which determine the variation
of drain current with gate voltage, ALPHA, which determines
saturation voltage, and LAMBDA, which determines the output
conductance. Two ohmic resistances, RD and RS, are included.
Charge storage is modeled by total gate charge as a function
of gate-drain and gate-source voltages and is defined by the
parameters CGS, CGD, and PB.
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 STATZ MESFETS

Statz MESFET Model Parameters

Name Parameter Units Default Example Area
VTO pinch-off voltage V -2.0 -2.0
BETA transconductance parameter A/V2 1e-4 1e-3 *
B doping tail extending parameter 1/V 0.3 0.3 *
ALPHA saturation voltage parameter 1/V 2 2 *
LAMBDA channel length modulation 1/V 0 1e-4

parameter

RD drain ohmic resistance Ω 0 100 /

RS source ohmic resistance Ω 0 100 /

CGS zero-bias G-S junction F 0 .1pF *
capacitance

CGD zero-bias G-D junction F 0 .05pF *
capacitance

PB gate junction potential V 1 0.6
IS gate junction saturation A 1e-14 1e-14 *

current
KF flicker noise coefficient - 0
AF flicker noise exponent - 1
FC coefficient for forward-bias - 0.5

depletion capacitance formula

.MODEL NE760 NMF (VTO=-1 BETA=.1275 B=.3 ALPHA=2
+ LAMBDA=15.5M RD=5.45 RS=4.88 IS=19.8P PB=1 FC=.2
+ CGS=.34P CGD=.03P)

.MODEL NE710 NMF (VTO=-2 BETA=.047 B=.3 ALPHA=2
+ LAMBDA=15.5M RD=1.13 RS=1.94 IS=7.31P PB=1 FC=.2
+ CGS=.45P CGD=.1P)

Statz Model
Examples

See  references
in Volume 2,
at the end of
Chapter 10  for
more
information.
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HEMT Model Parameters

Name Parameter
a 1st electron density parameter 2DEG
b MESFET Doping tail or 2nd electron density parameter 2DEG
c 3rd electron density parameter 2DEG
level Order of ns polynomial 2DEG
ma 1st electron density parameter Parasitic MESFET
mb 2nd electron density parameter Parasitic MESFET
length Gate length
alpha Saturation voltage parameter or Vdss adjustment factor
malpha mVdss adjustment factor
vpoly Order of Vdss polynomial 2DEG
vgg Root of Vdss polynomial 2DEG
vpoly Vdss polynomial adjustment factor 2DEG
ec Critical electric field for velocity saturation 2DEG
vsat Saturated electron velocity 2DEG
mvpoly Order of mVdss polynomial Parasitic MESFET
mvgg Root of mVdss polynomial Parasitic MESFET
mvpoly mVdss polynomial adjustment factor Parasitic MESFET
mec Critical electric field for velocity saturation Parasitic MESFET
mvsat Saturated electron velocity Parasitic MESFET
n Emission coefficient
gamma Vds-saturation smoothing parameter for capacitance 2DEG
mgamma Vds-saturation smoothing parameter for capacitance Parasitic MESFET
eta Second gate effect parameter 2DEG
meta Second gate effect parameter Parasitic MESFET
mlambda Par. MESFET channel length modulation parm.
mvto Pinch-off voltage Parasitic MESFET
mlinpow Power for linear region approximation Parasitic MESFET
linpow Power for linear region approximation
cgsp G-S Peripheral capacitance
cgdp G-D Peripheral capacitance
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CURTIS-ETTENBURG - MESFETS

Curtis-Ettenburg Model Parameters

Name Parameter
lg gate inductance
ld drain inductance
ls source inductance
is Junction Saturation Current
vbi Effective Builtin Potential
tau Internal Delay for Vin
cds Capacitance of D-S at zero bias
cgso Capacitance of G-S at zero bias
cgdo Capacitance of G-D at zero bias
a0 Coefficient Zero
a1 Coefficient One
a2 Coefficient Two
a3 Coefficient Three
beta Transconductance parameter
gamma Saturation Voltage Parameter
rdso Ids Channel-Length Modulation resistance parameter
vdsdc Ids Channel-Length Modulation voltage parameter
vdso Output Voltage where As are Evaluated
vds0 Output Voltage where As are Evaluated
vbr Break down voltage from D-G
rg Gate Ohmic Resistance
rd Drain ohmic resistance
rs Source ohmic resistance
fc Junction Capacitance breakpoint for 2 models
crf AC Correction Factor 1
rc AC Correction Factor 2
vt0 Pinch-off voltage
vto Pinch-off voltage
n factor of diode model

.MODEL NMES PMF (level=5 RD=2.6 RG=4.0 RS=2.6
+ A0=.1 A1=.0492 vbi=.8 A2=-.0025 A3=-.001667 RDSO=300
+ VDSO=3.0 GAMMA=3.0 VBR=20 vto=-3 beta=0 vdsdc=0
+ n=1 is=1e-14 cgso=.3p cgdo=30f cds=.3p fc=.5 tau=5p)
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Metal Oxide Field Effect Transistors - MOSFETs
Format: Mname ND NG NS NB modname

+ [L=lenval] [W=wval] [AD=adval] [AS=asval]
+ [PD=pdval] [PS=psval] [NRD=nrdval]
+ [NRS=nrsval] [OFF] [IC=vds,vgs,vbs] [TEMP=t]
+[M=value]

Examples: M1 24 2 0 20 TYPE1
M31 2 17 6 10 MODM L=5U W=2U
M1 2 9 3 0 MOD1 L=10U W=5U AD=100P
+AS=100P PD=40U PS=40U

Mosfet calls begin with the letter M. ND, NG, NS, and NB are the
drain, gate, source, and bulk (substrate) nodes, respectively.
Modname is the model name. L and W are the channel length
and width, in meters. AD and AS are the areas of the drain and
source diffusions, in meters2. Note that the suffix ‘U’ specifies
microns (1E-6 m) and ‘P’ sq-microns (1E-12 m2). If any of L, W,
AD, or AS values are not specified, then the default values are
used. The use of defaults simplifies input file preparation, as
well as the editing required if the device geometries are to be
changed. The .OPTIONS parameters DEFL, DEFW, DEFAD,
and DEFAS can be used to set the default values for the L, W,
AD, and AS parameters, respectively. PD and PS are the
perimeters of the drain and source junctions, in meters. NRD
and NRS designate the equivalent number of squares of the
drain and source diffusions; these values multiply the sheet
resistance RSH specified on the .MODEL statement giving the
parasitic series drain and source resistance values. PD and PS
default to zero, while NRD and NRS default to 1. OFF indicates
an initial condition for DC analysis. The initial condition
specification, using IC=vds,vgs,vbs, is intended for use with the
UIC option on the .TRAN line. It should be used when you
desire a specific initial condition, other than the operating point
value, at the beginning of the transient analysis. The (optional)
TEMP value is the temperature at which this device is to
operate and overrides the temperature specification in the
.OPTIONS statement.M is the multiplicity factor that simulates
parallel devices. The temperature specification is only valid for
model levels 1, 2, 3, and 6. It is not valid for the BSIM models.
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The MOSFET Models
IsSpice4  provides a variety of MOS models, which differ widely
in behavior. The level parameter specifies the model to be
used, except in the case of the C Code model, which uses an
alternate model type and keyletter:

LEVEL = 1 -> Shichman-Hodges
LEVEL = 2 -> MOS2 (as described in reference [10-4])
LEVEL = 3 -> MOS3, a semi-empirical model (see reference [10-4])
LEVEL = 4 -> BSIM 1 (as described in reference [10-5])
LEVEL = 5 -> BSIM 2 (as described in reference [10-6])
LEVEL = 6 -> MOS6 (as described in reference [10-7])
LEVEL = 7&8 -> BSIM3v3.2.4 (as described in reference [10-12])
LEVEL = 9 -> EPLF-EKV V 2.6
LEVEL =10 -> BSIMSOIv3.2 (Silicon-On-Insulator)
LEVEL =14&15-> BSIM4V4.6.1
AHDL Model -> Fully Depleted SOI MOSFET C Code Model [9-1. 9-2. 9-3]

Berkeley SPICE Level 1, 2, and 3
The DC characteristics of the level 1 through level 3 MOSFETs
are defined by the device parameters VTO, KP, LAMBDA, PHI
and GAMMA. These parameters are computed by IsSpice4 if
the process parameters (NSUB, TOX,..., etc.) are given, but
user-specified values always override the computed values.
VTO is positive for enhancement mode and negative for
depletion mode N-channel devices. VTO is negative for
enhancement mode and positive for depletion mode P-channel
devices. Charge storage is modeled by:

• Three constant capacitors, CGSO, CGDO, and CGBO,
which represent overlap capacitances,

• The nonlinear thin-oxide capacitance, which is distributed
among the gate, source, drain, and bulk regions, and

• The nonlinear depletion-layer capacitances for both
substrate junctions, divided into bottom and periphery
capacitances. These capacitors vary as the MJ and MJSW
power of the junction voltage, respectively, and are
determined by the parameters CBD, CBS, CJ, CJSW, MJ,
MJSW and PB.
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Charge storage effects are modeled by the piecewise linear
voltage-dependent capacitance model by Meyer (see references
[6-1, 6-11] in Working with Model Libraries). The thin-oxide
charge storage effects are treated differently for the level 1
model. These voltage-dependent capacitances are included
only if TOX is specified and they are represented using Meyer’s
formulation.

The Meyer model used in other versions of SPICE 2 is not the
original Meyer model proposed for SPICE 2, but a variation
(see reference [6-8] in  Working with Model Libraries).
Unfortunately, the modifications, which were intended to include
bulk voltage effects, cause the gate-drain and gate-source
capacitances to be discontinuous when Vds crosses zero, thus
causing a number of convergence problems. Additionally, due
to the fact that the Meyer model did not conserve charge, the
Ward Dutton charge conserving model (see reference[6-4] of
the Working with Model Libraries book) was added as an
option.

In IsSpice4, the MOSFET capacitance model has been replaced
with the original Meyer model. This should solve many of the
“Timestep too small” problems encountered in SPICE 2. At this
time, there is no charge conserving model in IsSpice4. Therefore,
the XQC parameter, which triggered use of the Ward Dutton
model, is not valid.

There is some overlap among the parameters describing the
junctions, e.g. the reverse current can be input either as IS (in
A) or as JS (in A/m2). Whereas the first is an absolute value, the
second is multiplied by AD and AS to give the reverse current
of the drain and source junctions, respectively. This methodology
has been chosen since there is no sense in always relating
junction characteristics with AD and AS entered on the device
call line; the areas can be defaulted using the .OPTIONS
statement. The same idea also applies to the zero-bias junction
capacitances, CBD and CBS (in F), on one hand, and CJ (in F/
m2) on the other. The parasitic drain and source series
resistances can be expressed as either RD and RS (in ohms),
or RSH (in ohms/sq.), with the latter multiplied by the number
of squares, NRD and NRS, entered on the device call line.
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A discontinuity in the MOS level 3 model with respect to the
KAPPA parameter has been corrected. Since this fix may affect
parameter fitting, the .OPTIONS parameter “BADMOS3” can
be set to use the old MOS level 3 model.

MOSFET Level 1, 2, & 3 Model Parameters

Name Parameter Units Default Example

LEVEL model index - 1
VTO zero-bias threshold voltage V 0.0 1.0
KP transconductance parameter A/V2 2e-5 3.1e-5
GAMMA bulk threshold parameter V.5 0.0 0.37
PHI surface potential V 0.6 0.65
LAMBDA channel-length modulation V-1 0.0 0.02

(MOS1 and MOS2 only)
RD drain ohmic resistance W 0.0
1.0
RS source ohmic resistance W 0.0
1.0
CBD zero-bias B-D junction F 0.0 20fF

capacitance
CBS zero-bias B-S junction F 0.0 20fF

capacitance
IS bulk junction saturation current A 1e-14 1e-15
PB bulk junction potential V 0.8 0.87
CGSO gate-source overlap capacitance F/m 0.0 4e-11

per meter channel width
CGDO gate-drain overlap capacitance F/m 0.0 4e-11

per meter channel width
CGBO gate-bulk overlap capacitance F/m 0.0 2e-10

per meter channel length
RSH drain and source diffusion W/sq. 0.0 10.0

sheet resistance
CJ zero-bias bulk junction bottom F/m2 0.0 2e-4

cap. per sq-meter of junction area
MJ bulk junction bottom grading - 0.5 0.5

coefficient
CJSW zero-bias bulk junction sidewall F/m 0.0 1e-9

cap. per meter of junction perimeter
MJSW bulk junction sidewall grading - 0.50(level 1)

coefficient 0.33(level 2, 3)
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JS bulk junction saturation current A/m2 0 1e-8
per sq-meter of junction area

TOX oxide thickness meter 1e-7 1e-7
NSUB substrate doping cm-3 0.0 4e15
NSS surface state density cm-2 0.0 1e10
NFS fast surface state density cm-2 0.0 1e10
TPG type of gate material: - 1.0

+1 opposite to substrate
-1 same as substrate
0 Al gate

XJ metallurgical junction depth meter 0.0 1u
LD lateral diffusion meter 0.0 0.8u
UO surface mobility cm2/V-s 600 700
UCRIT critical field for mobility V/cm 1e4 1e4

degradation (MOS2 only)
UEXP critical field exponent in mobility - 0.0 0.1

degradation (MOS2 only)
UTRA transverse field coefficient - 0.0 0.3

(mobility) (deleted for MOS2)
VMAX maximum drift velocity of carriers m/s 0.0 5e4
NEFF total channel charge (fixed and - 1.0 5.0

mobile) coefficient (MOS2 only)
KF flicker noise coefficient - 0.0 1e-26
AF flicker noise exponent - 1.0 1.2
FC coefficient for forward-bias - 0.5

depletion capacitance formula
DELTA width effect on threshold voltage - 0.0 1.0

(MOS2 and MOS3)
THETA mobility modulation (MOS3 only) V-1 0.0 0.1
ETA static feedback (MOS3 only) - 0.0 1.0
KAPPA saturation field factor (MOS3 only) - 0.2 0.5
ALPHA alpha (MOS3 only) - 0.0 -
XD depletion layer width (MOS3 only) - 0.0 -
TNOM parameter measurement temp. °C 27 50

.MODEL SST211 NMOS (LEVEL=1 VTO=0.8 KP=1E-02
+ GAMMA=5.E-06 PHI=0.75 LAMBDA=1.40E-02 RD=3.00E+01
+ RS=3.60E+01 IS=3.25E-14 CBD=5.13E-12 CBS=6.16E-12 PB=0.80
+ MJ=.46 TOX=3.00E-07 CGSO=3.60E-09 CGDO=3.00E-09
+ CGBO=2.34E-08)

MOSFET Level 1, 2, & 3 Model Parameters, continued

Name Parameter Units Default Example
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Sample Models
2 µm CMOS
Level 2 Models
supplied by
MOSIS® :

.MODEL NMOSIS NMOS LEVEL=2 LD=0.25U TOX=429E-10
+ NSUB=5.3087E+15 VTO=0.796 KP=4.991E-5 GAMMA=0.5215
+ PHI=0.6 UO=620.030 UEXP=0.1695 UCRIT=76799.6
+ DELTA=4.4485 VMAX=1E+5 XJ=0.25U LAMBDA=1.6208E-2
+ NFS=2.06E+11 NEFF=1 NSS=1E+10 TPG=1 RSH=30.94
+ CGDO=3.0185E-10 CGSO=3.0185E-10 CGBO=3.8275E-10
+ CJ=1.0159E-4 MJ=0.6306 CJSW=4.744E-10 MJSW=.315 PB=0.8

.MODEL PMOSIS PMOS LEVEL=2 LD=0.25U TOX=429E-10
+ NSUB=5.3093E+15 VTO=-0.8078 KP=2.157E-5 GAMMA=.5216
+ PHI=0.6 UO=267.981 UEXP=0.1297 UCRIT=5000
+ DELTA=1.3792 VMAX=1E+5 XJ=0.25U LAMBDA=2.724E-2
+ NFS=2.77E+11 NEFF=1.001 NSS=1E+10 TPG=-1 RSH=89.08
+ CGDO=3.0185E-10 CGSO=3.0185E-10 CGBO=4.054E-10
+ CJ=2.3837E-04 MJ=0.5353 CJSW=2.76E-10 MJSW=0.253 PB=0.8

.MODEL VN0603L NMOS (LEVEL=3 VTO=2.5 KP=.23
+ GAMMA=1.93U THETA=.24 PHI=.75 LAMBDA=1.25M RD=.49
+ RS=.49 IS=62.5F PB=.8 MJ=.46 CBD=544.4P CBS=753P
+ CGSO=4.5U CGDO=320N CGBO=760N)

Berkeley Short-Channel IGFET Model (BSIM1, 2, and 3)
The BSIM (level 4, 5, and 7/8) parameter values are obtained
from process characterization, and can be generated
automatically. For BSIM1/2 Ref. [10-5] in Working with Model
Libraries describes a means of generating a ‘process’ file that
can be converted into a sequence of .MODEL lines for inclusion
in an IsSpice4 circuit file. Parameters marked in the table with
an * in the l/w column also have corresponding parameters with
a length and width dependency. For example, VFB (flat-band
voltage), with units of Volts, has 2 related parameters, LVFB
and WVFB, which have units of Volt-µmeter The formula:

is used to evaluate the parameter value for the actual device
specified with:

and

effective

w

effective

L
o W

P
L
P

PP ++=

DLLL inputeffective −=

DWWW inputeffective −=
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Note that unlike the other models in IsSpice4, the BSIM models
are designed for use with a process characterization system
that provides all the parameters. Therefore, there are no
defaults for the parameters and leaving one parameter out is
considered an error. See ref. [10-5] for more information.

MOSFET BSIM 1 (Level 4) Model Parameters

Name Parameter Units l/w

VFB flat-band voltage V *
PHI strong inversion surface potential V *
K1 body effect coefficient V.5 *
K2 drain/source depletion charge sharing coefficient - *
ETA zero-bias drain-induced barrier lowering coefficient - *
MUZ zero-bias mobility (at Vds=0 Vgs=Vth) cm2/V-s
DL channel length reduction µm
DW channel width reduction µm
U0 zero-bias transverse-field mobility V-1 *

degradation coefficient
U1 zero-bias velocity saturation coefficient µm/V *
X2MZ sens. of mobility to substrate bias at vds=0 cm2/V2-s *
X2E sens. of drain induced barrier lowering effect V-1 *

to substrate bias
X3E sens. of drain induced barrier lowering effect V-1 *

to drain bias at Vds=Vdd
X2U0 sens. of transverse field mobility degradation V-2 *

effect to substrate bias
X2U1 sens. of velocity saturation effect to substrate bias µm/V2 *
X3U1 sens. of velocity saturation effect on drain µm/V2 *

bias at Vds=Vdd
MUS mobility at zero substrate bias and Vds=Vdd cm2/V2-s
X2MS sens. of mobility to substrate bias at Vds=Vdd cm2/V2-s *
X3MS sens. of mobility to drain bias at Vds=Vdd cm2/V2-s *
TOX gate oxide thickness µm
TEMP temperature at which parameters were measured °C
VDD measurement bias range (for MUS) V
CGDO gate-drain overlap cap. per meter channel width F/m
CGSO gate-source overlap cap. per meter channel width F/m
CGBO gate-bulk overlap cap. per meter channel length F/m
XPART gate-oxide capacitance charge model flag -
N0 zero-bias subthreshold slope coefficient - *
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BSIM3 is a physical model and is based on a coherent quasi
two-dimensional analysis of the MOSFET device structure,
taking into account the effects of device geometry and process
parameters. In other words, dependencies of important
geometry and process parameters such as channel length,
channel width, gate oxide thickness, junction depth, substrate
doping concentration, etc. are built into the model. BSIM3
allows users to accurately model MOSFET behavior over a
wide range of existing technologies and predict the behavior for
future technologies. See http://www-device.eecs.berkeley.edu/
intro.html for more information on BSIM3.

The BSIM3v3 (version 3.2) model has been extensively modified
from previous releases and is the recommended version.
Some of the modifications that are not found in version 2 are:

• A single I-V expression is used to model current and output
conductance characteristics for subthreshold, strong
inversion, linear, and saturation regions. This formulation
guarantees continuity for Ids, Gds, Gm and their derivatives
for all Vgs and Vds bias conditions.

NB sens. of subthreshold slope to substrate bias - *
ND sens. of subthreshold slope to drain bias - *
RSH drain and source diffusion sheet resistance W/sq.
JS source-drain junction current density A/m2

PB built-in potential of source-drain junction V
MJ grading coefficient of source-drain junction bottom -
PBSW built in potential of source-drain junction sidewall V
MJSW grading coefficient of source-drain junction sidewall -
CJ source-drain junction capacitance per unit area F/m2

CJSW source-drain junction sidewall cap. per unit length F/m
WDF source-drain junction default width m
DELL source-drain junction length reduction m

MOSFET BSIM 1 (Level 4) Model Parameters

Name Parameter Units l/w

XPART:XPART+0selects a 40/60 drain/source charge partition in
saturation, while
XPART=1 selects a 0/100 drain/source charge partition



205

CHAPTER 8 - ELEMENT SYNTAX

MOSFET BSIM 2 (Level 5) Model Parameters

Name Parameter l/w

VFB flat-band voltage *
PHI strong inversion surface potential *
K1 body effect coefficient *
K2 drain/source depletion charge sharing coefficient *
ETA0 zero-bias drain-induced barrier lowering coefficient *
ETAB sens. of drain induced barrier lowering *

effect to substrate bias
DL channel length reduction
DW channel width reduction
MU0 low-field mobility (at Vds=0 Vgs=Vth)
MU0B sens. of mobility to substrate bias at vds=0 *
MUS0 mobility at zero substrate bias and Vds=Vdd *
MUSB sens. of mobility to substrate bias at Vds=Vdd *
MU20 Vds dependence of  MU in tanh term *
MU2B sens. of mobility to substrate bias at Vds=vdd *
MU2G sens. of mobility to gate bias *
MU30 Vds dependence of  MU in linear term *
MU3B sens. of mobility to substrate bias at Vds=vdd *
MU3G sens. of mobility to gate bias *
MU40 Vds dependence of  MU in linear term *
MU4B sens. of mobility to substrate bias at Vds=vdd *
MU4G sens. of mobility to gate bias *

• There are new width dependencies for bulk charge and source/
drain resistance, Rds. This greatly enhances the accuracy of the
model for narrow width devices.

• dw and dl dependencies are available for different Wdrawn and
Ldrawn devices. This improves the model’s ability to fit a variety of
W/L ratios with a single set of parameters.

• New capacitance equations improve the modeling of short and
narrow geometry devices.

• New relaxation time model for characterizing the non-quasi-static
effect of MOS circuits for improved transient behavior.
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UA0 zero-bias transverse-field linear mobility *
degradation coefficient

UAB sens. of transverse field mobility degradation *
effect to substrate bias

UB0 zero-bias transverse-field quadratic mobility *
degradation coefficient

UBB sens. of transverse field mobility degradation *
effect to substrate bias

U10 zero-bias velocity saturation coefficient *
U1B sens. of velocity saturation effect to substrate bias *
U1D sens. of velocity saturation effect to drain bias *
N0 zero-bias subthreshold slope coefficient *
ND sens. of subthreshold slope to drain bias *
VOF0 Threshold voltage offset at Vds, Vbs=0 *
VOFB sens. of voltage offset to substrate bias *
VOFD sens. of voltage offset to drain bias *
AI0 pre-factor of hot-electron effect *
AIB sens. of pre-factor effect to substrate bias *
BI0 exponential factor of hot-electron effect *
BIB sens. of exponential factor to substrate bias *
VGHIGHupper bound of the cubic spline function *
VGLOW lower bound of the cubic spline function *
TOX gate oxide thickness
TEMP temperature at which parameters were measured
VDD measurement bias range
VGG measurement bias range
VBB measurement bias range
CGDO gate-drain overlap cap. per meter channel width
CGSO gate-source overlap cap. per meter channel width
CGBO gate-bulk overlap cap. per meter channel length
XPART gate-oxide capacitance charge model flag
RSH drain and source diffusion sheet resistance
JS source-drain junction current density
PB built-in potential of source-drain junction
MJ grading coefficient of source-drain junction
PBSW built-in potential of source-drain junction sidewall
MJSW grading coefficient of source-drain junction sidewall
CJ source-drain junction capacitance per unit area

MOSFET BSIM 2 (Level 5) Model Parameters, continued

Name Parameter l/w
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Name Parameter l/w
CJSW source-drain junction sidewall cap. per unit length
WDF source-drain junction default width
DELL source-drain junction length reduction

XPART If XPART= 0 selects a 40/60 drain/source charge partition in saturation,
while XPART = 1 selects a 0/100 drain/source charge partition.

MOSFET Level 6 Model Parameters
Name Parameter Units Default Example

VTO zero-bias threshold voltage V 0.0 0.6
KV saturation voltage factor - 2.0 0.9
NV saturation voltage coefficient - 0.5 0.87
KC saturation current factor - 5e-5 3.8e-5
NC saturation current coefficient - 1 1.2
NVTH threshold voltage coefficient V 0.5 0.6
PS saturation current modification V 0.0 0.0

parameter
GAMMA bulk threshold parameter V.5 0.0 0.6
GAMMA1 bulk threshold parameter1 V.5 0.0 0.37
SIGMA static feedback effect parameter V.5 0.0 0.37
PHI surface potential V 0.6 1.0
LAMBDA channel-length modulation V-1 0.0 0.02
LAMBDA0 channel-length modulation 0 V-1 0.0 0.06
LAMBDA1 channel-length modulation 1 V-1 0.0 0.003
RD drain ohmic resistance W 0.0 1.0
RS source ohmic resistance W 0.0 1.0
CBD zero-bias B-D junction cap. F 0.0 20fF
CBS zero-bias B-S junction cap. F 0.0 20fF
IS bulk junction saturation current A 1e-14 1e-15
PB bulk junction potential V 0.8 0.87
CGSO gate-source overlap capacitance F/m 0.0 4e-10

per meter channel width
CGDO gate-drain overlap capacitance F/m 0.0 4e-10

per meter channel width
CGBO gate-bulk overlap capacitance F/m 0.0 2e-10

per meter channel length
RSH drain and source diffusion W/sq. 0.0 10.0

sheet resistance
CJ zero-bias bulk junction bottom F/m2 0.0 2e-4

cap. per sq-meter of junction area
MJ bulk junction bottom grading - 0.5 0.429

coefficient

MOSFET BSIM 2 (Level 5) Model Parameters, continued
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NSS surface state density cm-2 0.0 1e10
TNOM parameter measurement temp. °C 27 50

Sample Models
Level 6 Models:

CJSW zero-bias bulk junction sidewall F/m 0.0 1e-10
cap. per meter of junction perimeter

MJSW bulk junction sidewall grading - 0.5 0.35
coefficient

JS bulk junction saturation current A/m2 1e-8
per sq-meter of junction area

LD lateral diffusion meter 0.0 0.28u
TOX oxide thickness meter 1e-7 1.9e-8
UO surface mobility cm2/V-s 600 700
FC coefficient for forward-bias - 0.5

depletion capacitance formula
TPG type of gate material: - 1.0

+1 opp. to substrate
-1 same as substrate
0 Al gate

NSUB substrate doping cm-3 0.0 4e15

BSIM3 Note: BSIM3 version 2 model parameters are not listed in the manual.
Only the lastest BSIM3 (version 3.2.4) parameters are listed here.

In addition to the instance  parameters listed on page 206, the following
additional  instance parameters may be used for BSIM3 models.

Name Parameter
NQSMOD Non-quasi-static model selector

The level 6 model describes a simple, general purpose model.
that is valid for short channel Mosfets with channel lengths
down to ª.25µm, GaAs FETs, and resistance inserted Mosfets.
The model is superior in speed to the level 3 model, running
about 3 times faster. For more information, see reference [6-7]
of the Working with Model Libraries book.

.MODEL N10L5 NMOS (LEVEL=6 TPG=1 KC=3.8921e-05
+ NC=1.1739 KV=0.91602 NV=0.87225
+ LAMBDA0=0.013333 LAMBDA1=0.0046901 VT0=0.69486
+ GAMMA=0.60309 PHI=1 TOX=1.98E-08
+ LD=0.1U NSUB=4.99E+16 NSS=0 CJ=4.091E-4
+ MJ=0.307 PB=1.0 CJSW=3.078E-10 MJSW=1.0E-2
+ CGSO=3.93E-10 CGDO=3.93E-10

MOSFET Level 6 Model Parameters, continued
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MOSFET, BSIM3 Version 3.2 Level 8 Model Parameters

Parameter Description Default Unit

Model Control Parameters
level BSIM3v3 model selector 8 none
mobmod Mobility model selector 1 none
capmod Flag for the short channel capacitance model 2 none
nqsmod Flag for the NQS model 0 none
noimod Noise model selector 1 none

For noimode=1 Spice2 fliker noise model+ Spice2 thermal noise model
For noimode=2 BSIM3 fliker noise model+ BSIM3 thermal noise model
For noimode=3 BSIM3 fliker noise model+ Spice2 thermal noise model
For noimode=4 Spice2 fliker noise model+ BSIM3 thermal noise model

Nqsmod    Non-quasi-static model selector
paramchk Parameter Warning Checking off
version BSIM3 version number 3.1

DC Parameters
vth0 Threshold voltage @Vbs=0 for large L. 0.7 for NMOS V

Typically Vth0 > 0 for NMOSFET and -0.7 for PMOS V
Vth0 < 0 for PMOSFET

k1 First-order body effect coefficient 0 V1/2

k2 Second-order body effect coefficient 0 none
k3 Narrow width coefficient 80 none
k3b Body effect coefficient of K3 0 1/V
w0 Narrow width parameter 2.5E-6 m
nlx Lateral non-uniform doping coefficient 1.74E-7 m
vbm Maximum applied body bias in Vth calculation -3 V
dvt0 First coeff. of short channel effect on Vth 2.2 none
dvt1 Second coeff. of short channel effect on Vth 0.53 none
dvt2 Body-bias coeff. of short channel effect on Vth -0.032 1/V
dvt0w First coefficient of narrow width 0 none

effect on Vth at small L
dvt1w Second coefficient of narrow width 5.3E6 1/m

effect on Vth at small L
dvt2w Body-bias coefficient of narrow width -0.032 1/V

effect on Vth at small L
u0 Mobility at Temp=Tnom  NMOSFET 0.067 m2/Vs

Mobility at Temp=Tnom  PMOSFET 0.025 m2/Vs
ua First-order mobility degradation coefficient 2.25E-9 m/V
ub Second-order mobility degradation coefficient 5.87E-19 (m/V)2

uc Body-effect of mobility degradation coefficient

BSIM3 Version 3.2 Level 8, continued

Used in IsSpice4
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Parameter Description Default Unit

  Mobmod=1,2: -4.65E-11 m/V2

  Mobmod=3:  -0.0465 m/V2

vsat Saturation velocity at Temp=Tnom 8.0E4 m/sec
a0 Bulk charge effect coefficient for channel length 1 none
ags Gate bias coefficient of Abulk 0 1/V
b0 Bulk charge effect coefficient for channel width 0 m
b1 Bulk charge effect width offset 0 m
keta Body-bias coefficient of the bulk charge effect -0.047 1/V
a1 First non-saturation factor 0 1/V
a2 Second non-saturation factor 1 none
rdsw Parasitic resistance per unit width 0 W - µmWr

prwb Body effect coefficient of Rdsw 0 V-1/2

prwg Gate bias effect coefficient of Rdsw 0 1/V
wr Width offset from Weff for Rds calculation 1 none
wint Width offset fitting param from I-V w/o bias 0 m
lint Length offset fitting param from I-V w/o bias 0 m
dwg Coefficient of Weff’s gate dependence 0 m/V
dwb Coefficient of Weff’s substrate body bias 0 m/V1/2

dependence
voff Offset voltage in the subthreshold region -0.08 V

at large W and L
nfactor Subthreshold swing factor 1 none
eta0 DIBL coefficient in the subthreshold region 0.08 none
etab Body-bias coeff for the subthreshold DIBL effect -0.07 1/V
dsub DIBL coeff exponent in subthreshold region 0.56 (drout) none
cit Interface trap capacitance 0 F/m2

cdsc Drain/source to channel coupling capacitance 2.4E-4 F/m2

cdscb Body-bias sensitivity of Cdsc 0 F/Vm2

cdscd Drain-bias sensitivity of Cdsc 0 F/Vm2

pclm Channel length modulation parameter 1.3 none
pdiblc1 First output resistance DIBL effect 0.39 none

correction parameter
pdiblc2 Second output resistance DIBL effect 0.0086 none

correction parameter
pdiblcb Body effect coefficient of DIBL 0 1/V

correction parameters
drout L dependence coefficient of the DIBL 0.56 none

correction parameter in Rout
pscbe1 First substrate current body-effect parameter 4.24E8 V/m
pscbe2 Second substrate current body-effect parameter 1.0E-5 m/V
pvag Gate dependence of early voltage 0 none
delta Effective Vds parameter 0.01 V

BSIM3 Version 3.2 Level 8, continued
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Parameter Description Default Unit
ngate Poly gate doping concentration 0 cm-3

alpha0 First parameter of impact ionization current 0 m/V
beta0 Second parameter of impact ionization current 30 V
rsh Source-drain sheet resistance 0 W/square
jssw Sidewall saturation current density 0 A/m
js Source-drain junction saturation current 1.0E-4 A/m2

AC and Capacitance Parameters
xpart Charge partitioning rate flag 0 none
cgs0 Non LDD region source-gate overlap (calculated) F/m

capacitance per channel length
cgd0 Non LDD region drain-gate overlap (calculated) F/m

capacitance per channel length
cgb0 Gate bulk overlap capacitance 2 * Dwe * Cox F/m

per unit channel length
cj Source and drain bottom junction 5.0E-4 F/m

2

mj Bottom junction capacitance grating coefficient 0.5
mjsw Source/Drain side junction capacitance 0.33 none

 grading coefficient
cjsw Source/Drain side junction capacitance 5.0E-10 F/m

2

cjswg Source/drain gate side wall junction cap. 5E-10 (Cjsw)
mjswg Source/drain gate side wall junction 0.33 (Mjsw) none

 grading coefficient
pbsw Source/Drain side junction built-in potential 1 V
pb Bottom junction built-in potential 1 V
pbswg Source/drain gate side wall junction 1.0 (Pbsw) V

 built-in potential
cgsl Light doped source-gate region overlap cap.0 F/m
cgdl Light doped drain-gate region overlap cap. 0 F/m
ckappa Coefficient for lightly doped region overlap 0.6 F/m

fringing field capacitance
cf Fringing field capacitance 7.3E-11(calculated) F/m
clc Constant term for the short channel mode 0.1E-6 m
cle Exponential term for the short channel mode 0.6 none
dlc Length offset fitting parameter from C-V 0 (lint) m
dwc Width offset fitting parameter from C-V 0 (wint) m
vfb Flat-band voltage parameter (for capmod=0) -1 V

NQS Model Parameters
elm Elmore constant of the channel 5 none

BSIM3 Version 3.2 Level 8, continued
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Parameter Description Default Unit

W and L Parameters
wl Coefficient of length dependence for 0 mWln

width offset
wln Power of length dependence of width offset 1 none
ww Coefficient of width dependence for 0 mWwn

width offset
wwn Power of width dependence of width offset 1 none
wwL Coefficient of length and width cross term 0 mWwn+Wln

 for width offset
ll Coefficient of length dependence for 0 mLln

length offset
lln Power of length dependence for length offset 1 none
lw Coefficient of width dependence for length offset 0 mLwn

lwn Power of width dependence for length offset 1 none
lwL Coefficient of length and width cross term 0 mLwn+Lln

for length offset
ub1 Temperature coefficient for Ub -7.61E-18 (m/V)2

uc1 Temperature coefficient for Uc
  Mobmod=1,2: -5.6E-11 m/V2

  Mobmod=3: -0.056 m/V2

at Temperature coefficient for saturation velocity 3.3E4 m/sec

Temperature Effect Parameters

tnom Temperature at which parameters are extracted 27oC
ute Mobility temperature exponent -1.5 none
kt1 Temperature coefficient for threshold voltage -0.11 V
kt1L Channel length sensitivity of the temperature 0 V*m

coefficient for threshold voltage
kt2 Body-bias coefficient of the Vth 0.022 none

temperature effect
ua1 Temperature coefficient for Ua 4.31E-9 m/V

ub1 Temperature coefficient for Ub -7.61E-18 (m/V)2

uc1 Temperature coefficient for Uc
  Mobmod=1,2: -5.6E-11 m/V2

  Mobmod=3: -0.056 m/V2

at Temperature coefficient for saturation velocity 3.3E4 m/sec
prt Temperature coefficient for Rdsw 0 W- µm
nj Emission coefficient of junction 1 none
xti Junction current temperature exponent 3.0 none

coefficient

BSIM3 Version 3.2 Level 8, continued

BSIM3 VERSION 3.1 LEVEL 8 PARAMETERS
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The BSIM3 model still retains the same basic physical properties
of version 2.0. For example, effects like threshold voltage roll-
off, non-uniform doping effect, mobility reduction due to vertical
field, carrier velocity saturation, channel-length modulation,
drain induced- barrier lowering, substrate current-induced body
effect, subthreshold conduction, and parasitic resistance effects
are all included. The BSIM3 version yields a more continuous
behavior and facilitates faster convergence.

Noic Noise parameter C NMOS -1.4E-12 none
PMOS -1.4E-12

em Saturated field 4.1E7 V/m
af Flicker frequency exponent for noimod=1 1 none
ef Flicker frequency exponent for noimod=2 1 none
kf Flicker noise parameter for noimod=1 0 none

Process Parameters

tox Gate oxide thickness 1.50E-8 m
xj Junction depth 1.50E-7 m
gamma1 Body-effect coefficient near the surface 0 (calculated) V

1/2

gamma2 Body-effect coefficient in the bulk 0 (calculated) V
1/2

nch Channel doping concentration 1.7E17 1/cm
3

nsub Substrate doping concentration 6.0E16 1/cm
3

vbx Vbs at which the depletion region width=xt 0 V
xt Doping depth 1.55E-7 m

Bound Parameters

lmin Minimum channel length 0 m
lmax Maximum channel length 1 m
wmin Minimum channel width 0 m
wmax Maximum channel width 1 m
binunit Bin unit selector 1 none

BSIM3 Version 3.2 Level 8, continued

Parameter Description Default Unit

Noise Model Parameters
Noia Noise parameter A NMOS 1.0E20 none

PMOS 9.9E18
Noib Noise parameter B NMOS 5.0E4 none

PMOS 2.4E3
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EPLF-EKV 2.6 MOSFET MODEL

The EPLF-EKV 2.6  LEVEL 9MOSFET model  is  scalable and
compact for use in the design and simulation of low-voltage,
low-current analog, and mixed analog-digital circuits using
submicron CMOS technologies.

The EKV MOSFET model is built on fundamental physical
properties of the MOS structure. It is formulated as a “single
expression,” which preserves continuity of first- and higher-
order derivatives with respect to any terminal voltage, in the
entire range of validity of the model.

These physical effects are included in the 2.6 model version:

Basic geometrical and process related aspects: oxide thickness,
junction depth, effective channel length and width.
Effects of doping profile and substrate effect.
Modeling of weak, moderate and strong inversion behavior.
Modeling of mobility effects due to vertical field.
Short-channel effects for velocity saturation, channel-length

modulation (CLM), source and drain charge-sharing
(including for narrow channel widths), reverse short-channel
effect (RSCE).

Modeling of substrate current due to impact ionization.
Quasistatic charge-based dynamic model.
Thermal and flicker noise modeling.
First-order non-quasistatic model for the transadmittances.
Temperature effects.
Short-distance geometry- and bias-dependent device matching.

The EKV model was developed by the Electronics Laboratories
of the Swiss Federal Institute of Technology in Lausanne.

∑

∑
∑
∑
∑

∑
∑
∑
∑
∑
∑

EPLF-EKV 2.6 LEVEL 9 MOSFET Model
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2/msA•

EPLF-EKV V. 2.6 LEVEL9 MOSFET MODEL

Symbols Description Default Unit
Model     Control Parameters
af Flicker noise exponent 1 --
bex Mobility temperature exponent -1.5 --
cbd B-D p-n capacitance 0 F
cbs B-S p-n capacitance 0 F
cgbo Gate-bulk overlap capacitance 0 F
cgdo Gate-drain overlap capacitance 0 F
cgso Gate-source overlap capacitance 0 F
cj Bottom p-n capacitance per area 0 F/m2

cjsw Sidewall p-n grading coefficient 0 F/m
cox Gate oxide capacitance 0.0007 F/m2

dl Channel length correction 0 m
dw Channel width correction 0 m
e0 New mobility reduction coefficient 1e+012 V/m
ekvint Interpolation function selector 0 --
fc Forward p-n capacitance coefficient 0.5 --

gamma Body effect parameter 1 V
iba First impact ionization coefficient 0 1/m
ibb Second impact ionization coefficient 3e+008 V/m
ibbt Temperature coefficient for ibb 0.0009 1/k
ibn Saturation voltage factor for impact ionization 1 --
is Bulk p-n saturation current 1e-014 A
js Bulk p-n bottom saturation current per area 0 A/m2

jsw Bulk p-n sidewall saturation current per length 0 A/m
kf Flicker noise coefficient 0 --
kp Transductance parameter 5e-005 A/V2

lambda Depletion length coefficient 0.5 --
leta Short channel coefficient 0.1 --
lk RSCE characteristic length 2.9e-007 m
mj Forward p-n capacitance coefficient 0.5 --

mjsw Sidewall p-n capacitance per length 0.33 F/m
n Emission coefficient 1 --
nlevel Noise level selector 1 --
nqs Non-Quasi-Static operation switch 0 --
pb Bulk p-n junction potential 0.8 V
pbsw Bulk sidewall p-n junction potential 0.8 V
phi Bulk Fermi potential 0.7 V
q0 RSCE excess charge 0
rd Drain ohmic resistance 0 W
rdc Drain contact resistance 0 W
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Fully-Depleted SOI MOS Model
The Fdsoi model is a new fully-depleted (FD) SOI MOSFET
model. The model is charge conserving and presents an infinite
order of continuity for all the small and large signal parameters.
This is a very desirable property for a model to have and it is
required in order to obtain good for a good performance in
circuit analysis. The Fdsoi model is the first semiconductor
model ever implemented as a C code (XDL) model. It is stored
in SOIMOS.DLL in the IS directory.

This device has four terminals: front gate, back gate, source
and drain. The FD SOI MOSFET has been proven to exhibit
clear advantages over bulk MOSFETs, especially in low-power
circuits [9-2]. The model consists of an intrinsic part and an

Symbols Description Default Unit
Model     Control Parameters

EPLF-EKV V. 2.6 LEVEL9 MOSFET MODEL

rs Source ohmic resistance 0 W
rsc Source contact resistance 0 W
rsh Drain, source sheet resistance 0 W
satlim Ratio defining the saturation limit 54.6 --
tcv Threshold voltage temperature coefficient 0.001 V/K
theta Mobility reduction coefficient 0 --
tnom Parameter measurement temperature 27 °C
tr1 First order temperature coefficient 0 --
tr2 Second order temperature coefficient 0 --
tt Bulk p-n transit time 0 sec
ucex Longitudinal critical field temperature coefficient 0.8 --
ucrit Longitudinal critical field 1e+008 V/m
vto Nominal threshold voltage 0.5 V
weta Narrow channel effect coefficient 0.25 --
xj Junction depth 1e-007 m
xti Junction current temperature exponent 3 --

BSIM 4 MODELS
The BSIM4 model parameters are listed in the BSIM4 manual
included with the software and on the installation CD.

EPLF-EKV 2.6 MOSFET MODEL
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Name Description Default
w channel width 2u
l channel length 2u
tof front oxide thickness 3.5n
tob back oxide thickness 40n
tb film thickness 8n
nsub film doping 8e10
u0 zero-bias mobility 6e-2
temp temperature 300
rd drain/source resistance 0
nit interface states charge 0
vthf strong inversion threshold voltage 0.5
vthfi weak inversion threshold voltage 0.5
af mobility degradation parameter 1.5e-8
snt weak/strong inversion smoothness 1
sigma DIBL/DICE parameter 0
kappa back bias parameter -0.6
ld charactersitic length 1e-7
qof front oxide trapped charge 0
qob back trapped charge density 0
ats triode/saturation smoothness 6
vsat saturation velocity 1e5
ldiff diffusion length 0.0
llat lateral diffusion length 0.0
wd diffusion width 0.0
af1 Phonon scattering parameter 0.0
af2 surface roughness parameter 0.0
mob mobility model option 0.0
ene subthreshold slope 0.0
sat velocity saturation model option 0.0
kv temp. dependence of vsat 1.0
kaf temp. dependence of af 1.0
kaf1 temp. dependence of af1 1.0
kaf2 temp. dependence of af2 1.0
kvth temp. dependence of vthf 0.0
ca control parameter 0.0
dvthl vthf reduction on 1 0.0
dkap kappa dependence on 1 0.0
dene ene dependence on 1 1.0 (0 PMOS)
icgf init. Vgf 0.1 (0 PMOS)
vfbf front flat-band voltage 0
vfbb back flat-band voltage 0
ics init. vs 0 (5 PMOS)
icgb init. vgb 0 (5 PMOS)
icd init. vd 1 (3 PMOS, limit @ 10)
q0 inversion charge density at threshold -0.2

Fully-Depleted SOI MOSFET
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SUBCIRCUITS

Subcircuits

A subcircuit that consists of IsSpice4 elements can be called
and defined in a manner similar to device models. The subcircuit
is defined in the input netlist by a group of element statements;
IsSpice4 then automatically inserts the group of elements
whenever the subcircuit is called. There is no limit to the size or
complexity of subcircuits, and subcircuits may contain other
subcircuits. Subcircuit calls may not be recursive.

Subcircuit Call Statement

Format: Xname N1 [N2 N3 ...] subname

Examples: X1 1 2 3 4 5 OPAMP

Subcircuit calls begin with the letter X. Nodes are listed in the
same order in which they are defined in the .SUBCKT statement,
and refer to connections within the subcircuit. The subcircuit
name, subname, is specified after the node list.

Subcircuit Connectivity Note:  The order of the connections
in the calling statement (X) must match the order of the
connections in the subcircuit statement (.SUBCKT) exactly in
terms of number and position. An error will result if the number

capacitances are obtained by differentiation of the total charges
with respect to the applied bias. The transient currents flowing
into the terminals are expressed as time derivatives of the
terminal charges. The extrinsic part of the model consists of the
overlap and junction capacitances. References detailing the
model are listed in Chapter 9 in the section dealing with the FD
SOI MOS code model.

IsSpice4
allows nested
subcircuits.

extrinsic part. The intrinsic part is determined by the channel
current (from source to drain) and the intrinsic charges at the
four terminals, which are written as explicit continuous functions
of bias. The effect of the parasitic drain-source resistance is
included in the intrinsic model. The total charge expressions
are obtained using the  quasi-static approximation. The intrinsic



219

CHAPTER 8 - ELEMENT SYNTAX

of connections are not equal. Incorrect simulation results will be
generated if the order does not correspond, since the
connections will be crossed. For example, node N1 in the X line
must be the same I/O point referrenced by node N1 in the
.SUBCKT line.

.Subckt Statement

Format: .SUBCKT subnam N1 [N2 N3 ...]

Examples: .SUBCKT OPAMP 1 2 3 4

A subcircuit definition begins with a .SUBCKT line. Subname is
the subcircuit name, and N1, N2, ... are the nodes referenced
in the subcircuit that you want to connect to the calling (X)
statement. Unlike in SPICE 2, node zero may be included on the
.SUBCKT line, as well as on the (X) calling line.

The group of element lines, which immediately follow the
.SUBCKT line, define the subcircuit. The last line in a subcircuit
description must be the .ENDS statement. Control statements
may not appear within a subcircuit definition; however, subcircuit
definitions may contain anything else, including other subcircuit
definitions, device models, and subcircuit calls. Note that any
device models or subcircuit definitions that are included as part
of a subcircuit definition are strictly local (i.e., such models and
definitions can not be used outside of the subcircuit definition).
Also, any element nodes that are not included on the .SUBCKT
line are strictly local, with the exception of 0 (ground), which is
always global.

When a circuit is parsed before simulation, all devices and local
nodes in the subcircuit are renamed as:

device keyletter:X call name:ref-des name
X call name1:X call name 2:...:node

For example, a resistor (R1 1 0 1K) in the subcircuit XOP will be
listed as “R:OP:1 1 0 1K”. Nodes in subcircuits are viewed the

Use the
.OPTIONS LIST
command to
see the full
IsSpice 4
netlist.
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.Ends Statement

Format: .ENDS [subname]

Examples: .ENDS OPAMP

This line must be the last one in any subcircuit definition. The
subcircuit name, if included, indicates which subcircuit definition
is being terminated; if omitted, all subcircuits being defined are
terminated. The name is required only when nested subcircuit
definitions are being defined. Since subcircuits can be listed
sequentially, with the same effect, it is not recommended that
subcircuits be nested. For example,

Recommended Not Recommended
.SUBCKT .SUBCKT
.
.ENDS .SUBCKT
.SUBCKT .SUBCKT
.
.ENDS .ENDS
.SUBCKT .ENDS
.
.ENDS .ENDS

SUBCIRCUITS

same way. For example, .PRINT DC V(SUB:5) will print node
5 in the subcircuit called by XSUB. Nested subcircuit instances
will have multiple qualifiers separated by colon. To see the
“flattened” subcircuit listing, use the .OPTIONS LIST function.
The complete netlist will appear in the IsSpice4 output file.
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Code Model Syntax

Introduction

This chapter is divided into sections containing analog, hybrid
(analog/real/digital interfaces), and digital code models. The
syntax used here follows the same format as the previous
chapter.

Format: Aname N1 N2 value

Examples: A1 [1  2] 3 nor
.model nor d_nor(....)
A1 1 2 Mygain
.model Mygain gain(...)

• All code models use the reference designation letter “A”.
• All code models require a .model statement
• Items in capital letters must appear exactly as shown.
• Items in italics must be replaced by user-defined data.

The relationship between the code model call line (i.e. A1 1 2
Mygain) and the .Model line (i.e. .Model Mygain gain(...)) is
discussed in detail in the Device Model Statements section in
the previous chapter. Since each code model requires a .Model
statement, an example is provided after the call line.

In addition to syntax information, two tables are included for
each model. The Port Table contains all the information about
the input and output connections of the device. The Parameter
table contains all of the information about the device’s model
parameters.
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The Port Table

The following list contains a brief explanation of the values in
the Port Table. These entries completely describe the
connections for a code model. Any entry that does not require
a value will contain a hyphen “-”.

Port Name
The internal name used to represent the port. This name is
used only within the simulator and is not important for netlist
construction.

Description
A brief text description of the purpose and function of the port.

Direction
The intended data flow direction of the port. The value will be;
in for input only, out for output only, or inout for both input and/
or output.

Default_Type
The default signal type that will be expected at the port. This can
be one of the following:

Type Description Direction
d digital in or out
g conductance (VCCS) inout
gd differential conductance (VCCS) inout
h resistance (CCVS) inout
hd differential resistance (CCVS) inout
i current in or out
id differential current in or out
v voltage in or out
vd differential voltage in or out
vnam voltage source name in

Allowed_Types
The signal types that are allowed at the port. One or more of the
values listed in the table above will be present.
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Vector
This entry is either a “Yes” or “No”. No signifies a single
connection. Yes means that a variable number of connections,
similar to a bus, can be made to the port. If this value is YES,
the vector bounds field will contain limits for the number of
connections. A vector connection is identified by grouping the
nodes within square braces such as [1 2 3 4]. An example call
line for a NAND gate would look like:

A1 [1 2 3 4] 5 NAND
.MODEL NAND D_NAND(... parameters ...)

Vector_Bounds
The lower and upper limit on the number of connections that
can be made if vector connections are allowed.

Null_Allowed
This entry is either a YES or NO. YES means the port may be
left unconnected. NO means a connection is required. The
string “NULL” is used as a placeholder on the call line. It
replaces the node number and indicates an unconnected port.

The ports listed in the Port Table appear in the order required
by the device’s call line. Referring to the Default_Type, Vector,
and Vector_Bounds fields below, the device requires that the
input is a digital vector with at least 2 nodes. Both input and
output ports are required. For example, A1 [1 2] 3 ModName
would be a valid call line.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
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The Parameter Table

The following list contains an brief explanation of the values that
are present in the Parameter table. These entries describe the
parameters needed to create a .Model statement for a code
model. The entries can appear in any order. Any entry that does
not require a value will contain a hyphen “-”.

Parameter_Name
The name of the parameter.

Description
A text description of the purpose and function of the parameter.

Data_Type
The type of value that the parameter will accept. Valid data
types are boolean, complex, int, real, and string.

Default_Value
The default value used by the model if no value is entered. If
Null_Allowed is YES, and there is no default value, the model
parameter will not be used.

Limits
Specifies the limits for parameter values. A range of values is
specified by enclosing the upper and lower limits in square
braces separated by a space. For example, [2  10] would limit
the model parameter to values between 2 and 10, inclusive. If
the upper or lower bound is unconstrained then a hyphen is
used. For example, [10  -] limits the parameter to all values
greater than or equal to 10.

Vector
If this value is TRUE, or YES, then a vector (set of parameter
values) is expected. A vector parameter may contain values
separated by spaces, commas or parentheses, and must be
enclosed in square braces. For example, den_array=[0  10
100] or cntrl_freq_array=[0,10k 1,20k 2,100k].
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The Vswitch
model is also
discussed in
Chapter 8.

Vector_Bounds
This parameter specifies the limits for a vector model parameter.
The first entry specifies the minimum number of values required.

Null_Allowed
A value of TRUE, or YES, means that the parameter can be left
unstated. If it is set to FALSE, or NO, a value must be entered.

Analog Code Models

Analog code models operate using continuous voltages and
currents like traditional SPICE models. Their inputs and outputs
all use the analog node type. No special translational bridges
are required to interconnect these elements unless a connection
is being made to a real or digital node type. The following analog
models are supplied with ISSPICE4.

Model Type Device
Core Magnetic Core
D_dt Time-derivative
Fdsoin/Fdsoip Fully depleted SOI Mosfet N/P channel
Hyst Hysteresis
Lcouple Inductive coupling
Limit Limiter
Oneshot Controlled oneshot
Pwl Table Model with slope extension
Pwl2 Table Model with limiting
S_xfer s-domain transfer function
Slew Slew rate follower
Sine Controlled sine wave oscillator
Square Controlled square wave oscillator
Triangle Controlled triangle wave oscillator
Vsrc_pwl Repeating piece-wise linear source
Vswitch Smooth transition Switch
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Magnetic Core

Format: Aname (plus minus) modname
.Model modname core(pn1=pv1 pn2=pv2..)

Example: A2 (3 4) iron_core
.Model iron_core core(area = 0.01 length = 0.01
+ hb_array = [-1000 -1000...)]... )

This model is used as a building block to create a wide variety
of magnetic circuit models. This function is normally used in
conjunction with the inductive coupling model (lcouple) to build
systems that emulate the behavior of linear and nonlinear
magnetic components. There are two fundamental modes of
operation for this magnetic core model; the pwl mode and the
hysteresis mode. The default is pwl mode.

PWL Mode (mode = 1)
The core model in PWL mode takes a voltage input that it treats
as a magnetomotive force (mmf) value. This value is divided by
the total effective length (length model parameter) of the core
to produce a value for the magnetic field Intensity, H. This value
of H is then used to find the corresponding flux density, B, using
the piecewise linear relationship described by the HB_array
data pairs. B is then multiplied by the cross-sectional area (area
model parameter) of the core to find the flux value. The flux is
then output as a current. The pertinent mathematical equations
are listed below:

H = mmf/L, where L=length and H=ampere-turns/meter

The B value is derived from a piecewise linear transfer function
described to the model via the HB_array data pairs. This
transfer function DOES NOT include hysteretic effects.

The final current allowed to flow through the core is equal to FFFFF.

F F F F F =BA, where A=area
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This value is in turn used by an Lcouple model to obtain a value
for the voltage, which is reflected back across its terminals to
the driving electrical circuit.

The following example netlist shows the use of two Lcouple
models and one core model to produce a simple primary/
secondary transformer.

A1 (2 0) (3 0) primary
.Model primary lcouple (num_turns = 155)
A2 (3 4) iron_core
.Model iron_core core (HB_array = [-1000,-3.13M -500,-2.63M -375,-2.33M
+ -250,-1.93M -188,-1.5M -125,-.625M -63,-.25M 0,0 63,.25M 125,.625M
+ 188,1.5M 250,1.93M 375,2.33M 500,2.63M 1000,3.13M] area = 0.01
+ length = 0.01)
A3 (5 0) (4 0) secondary
.Model secondary lcouple (num_turns = 310)

HYSTERESIS Mode (mode = 2)
The core model in hysteresis mode takes as an input a voltage,
which it treats as a magnetomotive force (mmf) value. This
value is used as an input to the equivalent of a hysteresis code
model block. The parameters defining the input low and high
values, the output low and high values, and the amount of
hysteresis are as defined in the hysteresis model. The output
from this mode, as in PWL mode, is a current value that is seen
across the core. An example of the core model used in this
fashion is shown below:

 A1 (2 0) (3 0) primary
.Model primary lcouple (num_turns = 155)
A2 (3 4) iron_core
.Model iron_core core (mode = 2 in_low=-7.0 in_high=7.0
+ out_lower_limit=-2.5e-4 out_upper_limit=2.5e-4 hyst = 2.3 )
A3 (5 0) (4 0) secondary
.Model secondary lcouple (num_turns = 310)

One final note about the two core models: certain parameters
are available in one mode, but not in the other. The in_low,
out_lower_limit, out_upper_limit, and hysteresis parameters
are not available in PWL mode. The HB_array, area, and length
parameters are not available in Hysteresis mode. The
input_domain and fraction parameters are common to both
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modes although their behavior is somewhat different.  For an
explanation of the input_domain and fraction values for
Hysteresis mode, please refer to the hysteresis (HYST) code
model discussion.

Port Table
Port_Name: mc
Description: “magnetic core”
Direction: inout
Default_Type: gd
Allowed_Types: [g,gd]
Vector: no
Vector_Bounds: -
Null_Allowed: no

Parameter Table
Parameter_Name: HB_array
Description: “field-flux desity array”
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
Vector_Bounds: [2 -]
Null_Allowed: no

Parameter_Name: area length
Description: “cross-sectional area” “core length”
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter_Name: input_domain fraction
Description: “input sm. domain” “smoothing switch”
Data_Type: real boolean
Default_Value: 0.01 TRUE
Limits: [1e-12 0.5] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Parameter_Name: mode
Description: “mode switch (1 = pwl, 2 = hyst)”
Data_Type: int
Default_Value: 1
Limits: [1 2]
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Parameter_Name: in_low in_high
Description: “input low value” “input high value”
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: hyst out_lower_limit out_upper_limit
Description: “hysteresis” “output lower limit” “output upper limit”
Data_Type: real real real
Default_Value: 0.1 0.0 1.0
Limits: [0 -] - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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Differentiator

Format: Aname Input Output modname
.Model modname d_dt(pn1=pv1)

Example: A12 7 12 slope_gen
.Model slope_gen d_dt(out_offset=0.0  gain=1.0
+ out_lower_limit=1e-12  out_upper_limit=1e12
+ limit_range=1e-9)

The differentiator block is a simple derivative stage that
approximates the time derivative of an input signal by calculating
the incremental slope of the input since the previous timepoint.
The block also includes gain and offset parameters to allow for
tailoring of the required signal, and output upper and lower
limits to prevent convergence errors resulting from excessively
large output values. The incremental value of output below the
output_upper_limit and above the output_lower_limit at which
smoothing begins is specified via the limit_range parameter.

Note: In the AC analysis, the value returned is equal to the
radian frequency of analysis multiplied by the gain. It is not
recommended that the model be used to provide integration
through the use of a feedback loop. The Laplace code model
can be used to provide the integration function (1/s).

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
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Parameter Table
Parameter_Name: gain out_offset
Description: “gain” “output offset”
Data_Type: real real
Default_Value: 1.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: out_lower_limit out_upper_limit
Description: “output lower limit” “output upper limit”
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: limit_range
Description: “smoothing limit range”
Data_Type: real
Default_Value: 1.0e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
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Fully Depleted SOI Mosfet

Format: Aname Drain Gate Source BackGate modname
.Model modname fdsoin (pn1=pv1) - NMOS
.Model modname fdsoip (pn1=pv1) - PMOS

Example: A1  1  2  3  4 Fdsoin
.MODEL Fdsoin Fdsoin(w=5e-6 l=5e-6 tof=34e-9 tob=450e-9
+ tb=75e-9 nsub=8e22 u0=6.1e-2 temp=298  rd=0 nit=0
+ vthf=0.8 vthfi=0.8 af=1e-8 snt=1 q0=0 sigma=0
+ kappa=3.2e-2 ld=0.9e-7 qof=0 qob=0 ats=6  vsat=1e5
+ ldiff = 4e-6 llat=0.3e-6 wd=0.5e-6 icgf=4 vfbf=0 vfbb=0
+ ics=0  icgb=0 q0=0 )

The Fdsoi models represent a new fully-depleted (FD) SOI
MOSFET (NMOS and PMOS versions). The model is charge
conserving and presents an infinite order of continuity for all the
small and large signal parameters.

This device has four terminals: front gate, back gate, source
and drain. The FD SOI MOSFET has been proven to exhibit
clear advantages over bulk MOSFETs, especially in low-power
circuits [9-2]. The model consists of an intrinsic part and an
extrinsic part. The intrinsic part is determined by the channel
current (from source to drain) and the intrinsic charges at the
four terminals, which are written as explicit continuous functions
of bias. The effect of the parasitic drain-source resistance is
included in the intrinsic model. The total charge expressions
are obtained using the  quasi-static approximation. The intrinsic
capacitances are obtained by differentiation of the total charges
with respect to the applied bias. The transient currents flowing
into the terminals are expressed as time derivatives of the
terminal charges. The extrinsic part of the model consists of the
overlap and junction capacitances.

[9-1] J. -P. Colinge,  Silicon-on-Insulator Technology: Materials to
VLSI, Norwell, MA: Kluwer,
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[9-2] J. P. Colinge, J. P. Eggermont, D. Flandre, P. Francis and P.
Jespers. “Potential of SOI for analog and mixed analog-digital low-power
applications”, Proc. ISSCC’95, pp. 194-195, February 1995.
[9-3] B. Iniguez, L. F. Ferreira, B. Gentinne and D. Flandre, “A Physically-
Based Continuous Fully-Depleted SOI MOSFET Model for Analog
Applications”, IEEE Trans. on Electron Devices, vol. 43, no. 4, April 1996.

Port Table
Port_Name: drain fgate source bgate
Description: “drain” “front gate” “source” “back gate”
Direction: inout inout inout inout
Default_Type: g g g g
Allowed_Types: [g v i ] [g,v,i] [g,v,i] [g,v,i]
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: no no no no

PARAMETER_TABLE:
Parameter_Name: w l tof tob
Description: “width” “length” “front oxide tk.” “back oxide tk.”
Data_Type: real real real real
Default_Value: 2e-6 2e-6 3.5e-9 40e-9
Limits: - - - -
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes

PARAMETER_TABLE:
Parameter_Name: tb nsub u0 temp
Description: “film tk.” “film doping” “zero-bias mob.” “temp”
Data_Type: real real real real
Default_Value: 8e-9 8e10 6e-2 300
Limits: - - - -
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes

PARAMETER_TABLE:
Parameter_Name: vfbf vfbb rd nit
Description: “front f-b voltage” “back f-b volt.” “drain/src res”  “int. states charge”
Data_Type: real real real real
Default_Value: 0 0 0 0
Limits: - - - -
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes
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PARAMETER_TABLE:
Parameter_Name: vthf vthfi vsat af
Description: “sinv. th. volt.” “weak inv. th. volt.” “satuation vel.” “mobility degradation”
Data_Type: real real real real
Default_Value: 0.5 0.5 1e5 1.5e-8
Limits: - - - -
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes

PARAMETER_TABLE:
Parameter_Name: snt ats sigma kappa
Description: “w/sinv. smoth”“triode/sat. smooth” “DIBL/DICE” “back bias”
Data_Type: real real real real
Default_Value: 1 6 0 -0.6
Limits: - - - -
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes

PARAMETER_TABLE:
Parameter_Name: ld qof qob q0
Description: “ch. length” “ft. oxide trap cd” “bk trapped cd”  “inv. charge density at th.”
Data_Type: real real real real
Default_Value: 1e-7 0 0 -0.2
Limits: - - - -
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes

PARAMETER_TABLE:
Parameter_Name: icgf icgb icd ics
Description: “init. vgf” “init. vgb” “init. vd” “init. vs”
Data_Type: real real real real
Default_Value: 0.1 0.0 1 0
Limits: - - - -
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes

PARAMETER_TABLE:
Parameter_Name: llat ldiff wd
Description: “lat. diff. len.” “diff. length” “diff. width”
Data_Type: real real real
Default_Value: 0.0 0.0 0
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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PARAMETER_TABLE:
Parameter_Name: af1 af2 mob
Description: “phonon scat. parm” “surf. rough parm” “mobility model option”
Data_Type: real real int
Default_Value: 0.0 0.0 0
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

PARAMETER_TABLE:
Parameter_Name: ene sat ca sigmal
Description: “subth. slope” “velocity saturation” “control parm.” “sigma dep. on l”
Data_Type: real int int real
Default_Value: 0.0 0 0 0
Limits: - - - -
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes

PARAMETER_TABLE:
Parameter_Name: kv kaf kaf1 kaf2
Description: “temp. dep. of vsat” “temp dep. of kaf” “temp. dep. of af1” “temp. dep. of af2”
Data_Type: real real real real
Default_Value: 1.0 1.0 1.0 1.0
Limits: - - - -
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes

PARAMETER_TABLE:
Parameter_Name: kvth dvthl dkap dene
Description: “temp. dep. of vthf”  “vthf red. on l”  “kappa dep. on l” “ene dep. on l”
Data_Type: real real real real
Default_Value: 0.0 0 0 0
Limits: - - - -
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes

Note: See the SOI Mosfet syntax in Chapter 8 for a more complete
description of each model parameter name.
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Hysteresis Block

Format: Aname Input Output modname
.Model modname hyst(pn1=pv1)

Example: A11 1 2 schmitt1
.Model schmitt1 hyst(in_low=0.7  in_high=2.4
+ hyst=0.5 out_lower_limit=0.5
+ out_upper_limit=3.0
+ input_domain=0.01  fraction=TRUE)

The hysteresis block is a simple buffer stage that provides
hysteresis of the output with respect to the input. The in_low
and in_high parameter values specify the center voltage or
current about which the hysteresis effect operates. The output
values are limited to out_lower_limit and out_upper_limit.

The value of the model parameter hyst is added to the in_low
and in_high points in order to specify the points at which the
slope of the hysteresis function would normally change abruptly
as the input transitions from a low to a high value. Likewise, the
value of hyst is subtracted from the in_high and in_low values
in order to specify the points at which the slope of the hysteresis
function would normally change abruptly as the input transitions
from a high to a low value. Input_domain defines the increment
below and above the corner points within, in which smoothing
of the d(out)/d(in) values occur. This prevents abrupt changes
in d(out)/d(in), which prevents convergence problems.

This figure
represents the
input/output
hysteresis loop
created by the
hyst code
model.

○

○

○

○

○

○

○

(in_high-hyst),out_upper_limit

The hysteresis
(hyst) is
symmetrical about
in_low and in_high

(in_high+hyst),out_upper_limit

(in_low+hyst),out_lower_limit

in_low

(in_low-hyst),out_lower_limit

hyst

in_high
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Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: in_low in_high
Description: “input low value” “input high value”
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: hyst out_lower_limit
Description: “hysteresis” “output lower limit”
Data_Type: real real
Default_Value: 0.1 0.0
Limits: [0.0 -] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: out_upper_limit input_domain
Description: “output upper limit” “input smoothing domain”
Data_Type: real real
Default_Value: 1.0 0.01
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: fraction
Description: “smoothing switch”
Data_Type: boolean
Default_Value: TRUE
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
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Inductive Coupling

Format: Aname (Input Nodes N1 N2)
+ (Output Nodes N3 N4) modname
.Model modname lcouple(pn1=pv1)

Example: A150 (7 0) (9 10) lcouple1
.Model lcouple1 lcouple(num_turns=10.0)

This model is used as a building block to create a wide variety
of inductive and magnetic circuit models. This function is
normally used in conjunction with the magnetic core model, but
can also be used with resistors, hysteresis blocks, etc. to build
systems that emulate the behavior of linear and nonlinear
components.

This model takes a current as the input to port L (input nodes
N1 N2). This current value is multiplied by the num_turns value
to produce an output voltage representing the magnetomotive
force. When Lcouple is connected to the magnetic core model,
or to a resistive device, a current will flow. This current value,
which is modulated by whatever Lcouple is connected to, is
used by Lcouple to calculate a voltage “seen” at the input. The
voltage is a function of the derivative with respect to time of the
current value seen at the output port, mmf_out.

The most common use for Lcouple is as a building block of
transformer models. To create a transformer with a single input
and a single output, you would use two Lcouple models plus
one core model. See the Magnetic Core model for more
information.
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Port Table
Port_Name: L mmf_out
Description: “inductor” “mmf output (in ampere-turns)”
Direction: inout inout
Default_Type: hd hd
Allowed_Types: [h,hd] [hd]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: num_turns
Description: “number of inductor turns”
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes



240

LIMITER

Limiter

Format: Aname Input Output modname
.Model modname limit(pn1=pv1 pn2=pv2..)

Example: A5 1 2 limit5
.Model limit5 limit( in_offset=0.1  gain=2.0
+ out_lower_limit=-1.0 out_upper_limit=1.0
+ limit_range=0.10 fraction=FALSE)

The Limiter is a single input, single output function similar to the
gain block. However, the output of the Limiter function is
restricted to the range specified by the out_lower and out_upper
limits. This model will operate in DC, AC and Transient analysis
modes.

The linear range of the output is BELOW (out_upper_limit -
limit_range) and ABOVE (out_lower_limit + limit_range). In this
range, the output = gain * (in_offset + input). Smoothing of the
output begins in the regions between the bounds of the linear
range and  the upper and lower limits defined in the model. If
fraction is FALSE, then the limit_range value is interpreted as
an absolute value. If fraction is TRUE, the limit_range is given
by: limit_range = limit_range * (out_upper_limit -out_lower_limit).

For the example above, the output will begin to smooth out at
±0.9 volts.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
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Parameter Table
Parameter_Name: in_offset gain out_lower_limit
Description: “input offset” “gain” “output lower limit”
Data_Type: real real real
Default_Value: 0.0 1.0 0.0
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: limit_range out_upper_limit
Description: “smoothing limit range” “output upper limit”
Data_Type: real real
Default_Value: 1.0e-6 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: fraction
Description: “smoothing switch”
Data_Type: boolean
Default_Value: FALSE
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes



242

CONTROLLED ONE-SHOT

Controlled One-Shot

Format: Aname Clk Control_Input Clear Output modname
.Model modname oneshot(pn1=pv1 pn2=pv2..)

Example: Ain 1 2 3 4 one
.Model one oneshot(out_low = 0  out_high = 4.5  duty_cycle =.9
+ cntl_pw_array = [-1,1U  0,1U  10,.1M  11,.1M] clk_trig = 0.9
+ pos_edge_trig = False rise_delay = 20N fall_delay = 35N)

The one-shot takes an input voltage, or current, as the
independent variable in the piecewise linear curve described
by the coordinate points of the cntl_pw_array parameters.
From the curve, a pulse width is determined, and the oscillator
will output a pulse of that width. The pulse will be delayed by the
delay value and have the specified output values and rise and
fall times. If the model parameter pos_edge_trig is TRUE
(default), the one-shot is triggered by a rising clock edge at the
value of clk_trig. If pos_edge_trig is FALSE, the one-shot will be
triggered on the falling edge. The retrig parameter specifies
whether or not the one-shot can be retriggered. By default, the
oneshot cannot be retriggered. Set the retrig parameter to
TRUE in order to retrigger this oneshot.

Port Table
Port Name: clk cntl_in
Description: “clock input” “control input”
Direction: in in
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id,vnam]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no yes

Port Name: clear out
Description: “clear signal” “output”
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes no

If the input is
between two
points in the
cntl_pw_array,
the output pulse
width is
determined by
the linear
interpolation
between the
two input
points.

See the Table
Model for more
information.
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Parameter Table
Parameter_Name: clk_trig pos_edge_trig
Description: “clock trigger value” “pos/neg edge trigger switch”
Data_Type: real boolean
Default_Value: 0.5 TRUE
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter_Name: cntl_pw_array out_low out_high
Description: “control/pw array” “output low value” “output high value”
Data_Type: real real real
Default_Value: - 0.0 1.0
Limits: - - -
Vector: yes no no
Vector_Bounds: [2 -] - -
Null_Allowed: no yes yes

Parameter_Name: rise_delay rise_time
Description: “delay from trig.” “output rise time”
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: - -
Vector: no  no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: fall_delay fall_time retrig
Description: “delay from pw” “output fall time” “retrigger switch”
Data_Type: real real boolean
Default_Value: 1.0e-9 1.0e-9 FALSE
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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Table Models

Table Model With Slope Extension
Format: Aname Input Output modname

.Model modname pwl(pn1=pv1 pn2=pv2..)

Example: A7 2 4 xfer_cntl1
.Model xfer_cntl1 pwl( xy_array=[-2.0 -0.2 -1.0
+ 0.2 2.0 0.1 4.0 2.0 5.0 10.0] input_domain=0.05
+ fraction=TRUE)

Table Model With Limiting
Format: Aname Input Output modname

.Model modname pwl2(pn1=pv1 pn2=pv2..)

Example: A7 2 4 table2
.Model table2 pwl2( xy_array=[-1 -1  0 0
+ 1 1] input_domain=0.1
+ fraction=FALSE)

The table models (or piece-wise linear controlled sources) are
single-input, single-output functions similar to the gain block.
However, the output of the table models are not necessarily
linear for all input values. Instead, they follow an I/O relationship
specified via the xy_array coordinates in their .Model statement.
The model name for the table model with slope extension is
PWL. The model name for the table model with limiting is
PWL2.

The xy_array values represent coordinate points on the x and
y axes, respectively. There may be as few as two pairs
specified, or as many pairs as memory and simulation speed
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allow. This permits you to approximate a nonlinear function by
entering multiple input-output coordinate points.

Two aspects of the table model warrant special attention.
These are the handling of endpoints and the smoothing of the
described transfer function near coordinate points.

In order to produce output for input values outside of the bounds
of the PWL function, the table model extends the slope found
between the lowest two coordinate pairs and the highest two
coordinate pairs. This has the effect of making the transfer
function completely linear for an input less than xy_array[0,0]
and greater than xy_array[n,n]. It also has the potentially subtle
effect of unrealistically causing an output to reach a very large
or small value for large inputs.

Note: The PWL table model does not inherently provide a
limiting capability. PWL2, which has limiting, can be used if
limiting outside the table value range is desired.

For output values corresponding to input values outside of the
bounds of the PWL2 function, the table model limits the output
value to the endpoint values (0 value slope) found below the
lowest coordinate pair and above the highest coordinate pair.
This has the effect of limiting the transfer function output inputs
less than xy_array[0,0] and greater than xy_array[n,n].

In order to diminish the potential for nonconvergence when
using the PWL block, a form of smoothing around the xy_array
coordinate points is necessary. This is due to the iterative
nature of the simulator and its reliance on smooth first derivatives
of transfer functions in order to arrive at a matrix solution.
Consequently, the “input_domain” and “fraction” parameters



246

TABLE MODEL

are included to provide some control over the amount and
nature of the smoothing performed.

“Fraction” is a switch that is either TRUE or FALSE. When
TRUE, the simulator assumes that the specified input_domain
value is to be interpreted as a fractional figure. Otherwise, it is
interpreted as an absolute value. Thus, if fraction is TRUE and
input_domain=0.10, the simulator assumes that the smoothing
radius about each coordinate point is equal to 10% of the length
of either the x array segment above each coordinate point, or
the x  array segment below each coordinate point. The specific
segment length chosen will be the smallest of these two for
each coordinate point. If fraction is FALSE and input=0.10, the
simulator will begin smoothing the transfer function at 0.10V (or
amperes) below each x array coordinate, and will continue the
smoothing process for another 0.10 volts (or amperes) above
each x array coordinate point. Since overlap of smoothing
domains is not allowed, the model checks to ensure that the
specified input_domain value is not excessive.

One subtle consequence of the use of the fraction=TRUE
feature of the table model is that, in certain cases, you may
inadvertently create extreme smoothing of functions by choosing
inappropriate coordinate value points. This can be demonstrated
by considering a function described by three coordinate pairs,
such as (-1,-1), (1,1), and (2,1). In this case, with a 10%
input_domain=0.10), you would expect to see rounding to
occur between in=0.9 and in=1.1, and nowhere else. On the
other hand, if you were to specify the same function using the
coordinate pairs (-100,-100), (1,1) and (201,1), you would find
that rounding occurs between in=-19 and in=21. Clearly in the
latter case, the smoothing might cause an excessive divergence
from the intended linearity above and below in=1.
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Using Table Models From Other SPICE Programs
Other SPICE programs may use a similar format for table-type
models. If the data points are in an X,Y sequence you can
simply:

• Select and copy the points from the existing netlist in any
text editor.

• Then edit the SPICE model library file containing the table
code model or the Properties dialog for the table code
model.

• You can paste in the data points into the xy_array model
parameter field.
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Port Table
Port_Name: in out
Description: “input” “output”
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: xy_array
Description: “xy-element array”
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
Vector_Bounds: [2 -]
Null_Allowed: no

Parameter_Name: input_domain fraction
Description: “input sm. domain” “smoothing switch”
Data_Type: real boolean
Default_Value: 0.01 TRUE
Limits: [1e-12 0.5] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Laplace (s-Domain) Transfer Function

Format: Aname Input Output modname
.Model modname s_xfer(pn1=pv1 pn2=pv2..)

Example: A12 1 2 Cheby3K
.Model Cheby3K  s_xfer(in_offset=0.0
+ gain=1.0   num_coeff=[1.0]
+ den_coeff=[1.0 1.42562 1.51620])

The s-domain transfer function is a single-input, single-output
Laplace transfer function that provides flexible modeling of the
frequency-domain characteristics of a signal. The code model
may be configured to produce an arbitrary s-domain transfer
function with the following restrictions:

• The degree of the numerator polynomial cannot exceed
that of the denominator polynomial in the variable “s”.

• The coefficients for a polynomial must be stated explicitly.
That is, if a coefficient is zero, it must be included as an input
to the num_coeff or den_coeff vector.

• Only scientific notation is allowed for the coefficients. In
other words, 3.578*10^13 should be entered as 3.578e13.

The order of the coefficient parameters is from the highest-
powered term, decreasing to the lowest. Thus, for the coefficient
parameters specified below, the equation in “s” is shown:

.Model filter s_xfer(gain=0.139713  num_coeff=[1  0   0.074641]
+ den_coeff=[1   0.99894   0.011701])

...specifies a transfer function of the form...

0.011701  0.99894s  
074641.13971.0 2

2

++
+•

s
s

The s-domain transfer function includes gain and input offset
parameters that allow tailoring of the required signal. There are
no limits on the internal signal values or on the output value of
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1.10251  1.09773s  
1

2 ++s

the s-domain transfer function, so you are cautioned to specify
gain and coefficient values that will not cause the model to
produce excessively large values.

The denorm_freq term allows you to specify coefficients for a
normalized filter (i.e., one in which the frequency of interest is
1 rad/s). Once these coefficients are included, specifying the
denormalized frequency value “shifts” the corner frequency to
the actual one of interest. As an example, the following transfer
function describes a Chebyshev lowpass filter with a corner
(passband) frequency of 1 rad/s:

In order to define an s_xfer model for the above equation, but
with the corner frequency equal to 1500 rad/s (9425 Hz), the
following model line will be needed:

.Model cheby1 s_xfer(num_coeff=[1]
+ den_coeff=[1 1.09773 1.10251] denorm_freq=1500)

Similar results could have been achieved by performing the
denormalization prior to specification of the coefficients, and
setting denorm_freq to a value of 1.0 (or not specifying the
frequency, since the default is 1.0 rad/s). Note that frequencies
are always specified in RADIANS/SECOND.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
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Parameter Table
Parameter_Name: in_offset gain num_coeff
Description: “input offset” “gain” “numerator coeff”
Data_Type: real real real
Default_Value: 0.0 1.0 -
Limits: - - -
Vector: no no yes
Vector_Bounds: - - [1 -]
Null_Allowed: yes yes no

Parameter_Name: den_coeff out_ic
Description: “denominator coeff” “output initial value”
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: yes no
Vector_Bounds: [1 -] -
Null_Allowed: no yes

Parameter_Name: denorm_freq
Description: “denormalized corner freq.(radians)”
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
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Slew Rate Block

Format: Aname Input Output modname
.Model modname slew(pn1=pv1 pn2=pv2..)

Example: A15 1 2 slew1
.Model slew1 slew(rise_slope=0.5U
+ fall_slope=1U )

This function is a simple slew rate block that limits the absolute
slope of the output with respect to time. The actual slew rate
effects of over-driving an amplifier circuit can be accurately
modeled by cascading the amplifier with this model. The units
used to describe the maximum rising and falling slope values
are expressed in volts, or amperes, per second. Thus a desired
slew rate of 0.5 V/µs will be expressed as 0.5e+6, etc.

The slew rate block will continue to raise or lower its output until
the difference between the input and the output values are zero.
Thereafter, it will resume following the input signal, unless the
slope again exceeds its rise or fall slope limits. The range input
specifies a smoothing region above or below the input value.
Whenever the model is slewing and the output comes to within
the input + or - the range value, the partial derivative of the
output with respect to the input will begin to smoothly transition
from 0.0 to 1.0. When the model is no longer slewing (output =
input), dout/din will equal 1.0.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

For more detail
on the
piecewise linear
response, see
the Table code
model.
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Parameter Table
Parameter_Name: rise_slope fall_slope
Description: “max rising slope” “max falling slope”
Data_Type: real real
Default_Value: 1.0e9 1.0e9
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Controlled Sine Wave Oscillator

Format: Aname Control_Input Output modname
.Model modname sine(pn1=pv1 pn2=pv2..)

Example: Asine 1 2 in_sine
.Model in_sine sine( out_low = -5 out_high = 5
+ cntl_freq_array = [-1,10  0,10  5,1K  6,1K])

The controlled sine wave oscillator takes an input voltage, or
current value, and uses it as the independent variable in the
piecewise linear curve described by the coordinate points of the
cntl_freq_array model parameter. From the curve and the input
signal, a frequency value is determined, and the oscillator will
output a sine wave at that frequency with peak values described
by out_low and out_high. If the input is between two points in
the cntl_freq_array, the output frequency is determined by the
linear interpolation between the two points.

The cntl_freq_array values represent coordinate points on the
x and y axes, and normally represent voltage and frequency
pairings. There may be as few as two pairs specified, or as
many as memory and simulation speed allow. This permits you
to accurately approximate a nonlinear function of frequency by
entering multiple input-output coordinate points.

Cntl_freq_arrays with 2 x, y points will yield a linear variation of
frequency with respect to the control input. Greater array sizes
will yield a piecewise linear response.

Port Table
Port Name: cntl_in out
Description: “control input” “output”
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
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Parameter Table
Parameter_Name: cntl_freq_array
Description: “control/freq array”
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: yes
Vector_Bounds: [2 -]
Null_Allowed: no

Parameter_Name: out_low out_high
Description: “peak low value” “peak high value”
Data_Type: real real
Default_Value: -1.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Controlled Square Wave Oscillator

Format: Aname Control_Input Output modname
.Model modname square(pn1=pv1 pn2=pv2..)

Example: Ain 1 2 pul
.Model pul square(out_low = 0 out_high = 4.5
+ cntl_freq_array = [-1,10  0,10  5,1K  6,1K]
+ rise_time = 1U fall_time = 2U
+ duty_cycle = 0.2)

The controlled square wave oscillator is characterized by the
values of out_low, out_high, duty_cycle, rise_time, and fall_time.
It takes an input voltage, or current, and uses it as the
independent variable in the piecewise linear curve, which is
described by the coordinate points of the cntl_freq_array
parameter. The oscillator will output a square wave at the
frequency described by the curve and the input signal. If the
input is between two points in the cntl_freq_array, the output
frequency is determined by the linear interpolation between the
two points. The cntl_freq_array values represent coordinate
points on the x and y axes, respectively, and normally represent
voltage and frequency, or current and frequency pairings.

Port Table
Port Name: cntl_in out
Description: “control input” “output”
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id, vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
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Parameter Table
Parameter_Name: cntl_freq_array
Description: “control/freq array”
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
Vector_Bounds: [2 -]
Null_Allowed: no

Parameter_Name: out_low out_high
Description: “peak low value” “peak high value”
Data_Type: real real
Default_Value: -1.0 1.0
Limits: -  -
Vector: no no
Vector_Bounds: -  -
Null_Allowed: yes yes

Parameter_Name: duty_cycle rise_time fall_time
Description: “duty cycle” “rise time” “fall time”
Data_Type: real real real
Default_Value: 0.5 1.0e-9 1.0e-9
Limits: [1e-6 0.999999] - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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Controlled Triangle Wave Oscillator

Format: Aname Control_Input Output modname
.Model modname triangle(pn1=pv1 pn2=pv2..)

Example: Ain 1 2 ramp
.Model ramp triangle(out_low = -5 out_high = 5.0
+ cntl_freq_array = [-1,10  0,10  5,1K  6,1K]
+ duty_cycle = 0.9)

The controlled triangle wave oscillator is characterized by the
values out_low, out_high and rise_duty. Its input is either a
voltage or current. This value is used as the independent
variable in the piecewise linear curve described by the coordinate
points of the cntl_freq_array parameter. The cntl_freq_array
values represent coordinate points on the x and y axes,
respectively, and normally represent voltage and frequency, or
current and frequency pairings. From an input signal and the
curve, a frequency value is determined, and the oscillator will
output a triangle wave at that frequency. If the input is between
two points in the cntl_freq_array, the output frequency is
determined via linear interpolation between the two points.

Port Table
Port Name: cntl_in out
Description: “control input” “output”
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
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Parameter Table
Parameter_Name: cntl_freq_array duty_cycle
Description: “control/freq array” “rise time duty cycle”
Data_Type: real real
Default_Value: - 0.5
Limits: - [1e-6 0.999999]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no yes

Parameter_Name: out_low out_high
Description: “peak low value” “peak high value”
Data_Type: real real
Default_Value: -1.0 1.0
Limits: -  -
Vector: no no
Vector_Bounds: -  -
Null_Allowed: yes yes
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Smooth Transition Switch

Format: Aname Output Nodes N1 N2
+ Input_Controlling_Nodes N3 N4 modname
.Model modname vswitch(pn1=pv1...)

Example: Atest1 1 2 sw1
.Model sw1 vswitch(ron=1 roff=1meg )

The model provides a voltage controlled impedance with a
smooth (continuous derivatives) transition region between the
on and off states. The on and off impedances are defined by ron
and roff respectively.

Port Table
Port_Name: out in
Description: “output” “input”
Direction: inout inout
Default_Type: gd gd
Allowed_Types: [gd] [gd]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: ron roff
Description: “on resistance” “off resistance”
Data_Type: real real
Default_Value: 1.0 1.0e6
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Parameter_Name: von voff
Description: “on voltage” “off voltage”
Data_Type: real real
Default_Value: 1.0 0.0
Limits: - -
Vector: no no
Vector_Bounds:  - -
Null_Allowed: yes yes
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Repeating Piece-Wise Linear Source

Format: Aname Output N1 modname
.Model modname vsrc_pwl(pn1=pv1...)

Example: Atest1 1 2 vsrc
.MODEL vsrc vsrc_pwl(
+ input_file=C:\User\Long.txt  repeat=False)
.MODEL vsrc vsrc_pwl(input_file=mine.txt)

This code model reads a file containing piece-wise linear data
point pairs and outputs the data as a voltage or current (two
versions, one with voltage output and one with current output
are included in ICAP/4). The data file is defined by the input_file
parameter. The “repeat” parameter allows you to repeat the
data stream (if it equals True”, default case) for the duration of
the transient analysis. A repeat value of “False” causes the pwl
values to be run once. The model type is defined as vsrc_pwl.

PWL file Format/Definition
The pwl file has the following format/definition:

The pwl file can be located anywhere. The filename can have
any extension. All text on a single line, following an * (asterisk)
or ; (semicolon), is considered a comment. Each line is read
separately and is trimmed of white spaces and + symbols
before the data point reading begins.

The following search scheme is employed for the pwl file:

• Where the code model tells it to, i.e. the path stated in the
input_file model parameter.

• In the working directory, i.e. the location of the .ckt or .cir file
being simulated.

• In the directory pointed to by ICAPSDir\pr, where ICAPSDir
is the ICAPS environment variable.

• In the directory pointed to by IS@@@, where IS@@@ is
the network environment variable.

• In the directory where Spice4.Exe (IsSpice4) is located.
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Note: this is the same search scheme use by all code models
that access text files.

White spaces are defined as spaces, commas, tabs, and left
and right parentheses. Data points must be in time, value pairs.
These pairs must be consecutive from the top of the file to the
bottom, i.e. time must increase monotonically.

Comment Characters
Comment characters can be overridden using the following
syntax:

[Comment chars]          “*;”

This statement can appear anywhere in the file. The characters
defined between the quotation marks will replace the default
comment characters mentioned previously. The new comment
characters will be valid from the point the line is inserted to the
end of the file, or another [Comment chars] line is inserted. The
following example would replace * and ; with | (pipe) as the only
valid comment character.

[Commant chars]          “|”

Delimiter Characters
White space can be overridden using the following syntax:

[Delimiter chars]           “,()”

This statement can appear anywhere in the file. The characters
defined between the quotation marks will replace the default
white space characters mentioned previously. The new white
space characters will be valid from the point the line is inserted
to the end of the file, or another [Delimiter chars] line is inserted.
The following example would be valid using the default model
settings:

(time,voltage) (time,voltage)
(time,voltage) (time,voltage)
(time,voltage) (time,voltage)
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If you were to insert,

[Delimiter char]        “”
You would not be able to use the time voltage pairings just
shown.

Errors Checking
The model checks for an even number of point pairs (both x nd
y values), invalid characters in a line, and non-increasing time.
In each case where an error is found the filename and line
number will be displayed in the IsSpice4 error file.

Port Table
Port_Name: out
Description: “output”
Direction: out
Default_Type: v
Allowed_Types: [v,vd,i,id]
Vector: no
Vector_Bounds: -
Null_Allowed: no

Parameter Table
Parameter_Name: input_file
Description: “input filename”
Data_Type: string
Default_Value: “source.txt”
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: no

Parameter Table
Parameter_Name: repeat
Description: “repeat”
Data_Type: boolean
Default_Value: TRUE
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes



265

CHAPTER 9 - CODE MODEL SYNTAX

Sample PWL Files
* An example pwl file
[Comment chars]  “*|”
[Delimieter chars]  “,()”
* A really long test
+ 0.000000 0 0.000500 27 0.042000 27 0.042500 0 |more comments
+ (0.050000,0) (0.050500,27) (0.092000,27) (0.092500,0)
...
...

* Another example pwl file (some pairs with spaces, some with tabs)
 0.0 1.0
 1.0u 2.0
 2.0u 3.0
 3.0u 4.0
 4.0u 3.0
5.0u 0.0
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Hybrid Code Models and Node Bridges

ISSPICE4 is a mixed-mode simulator that contains both analog
and event-driven simulators. This means that any simulation
may contain components that are analog, event-driven, or a
combination of both. During a mixed-mode simulation, the
analog and the event-driven elements and simulation algorithms
must communicate between each other. The simulator
communication is handled by ISSPICE4.

Elements are classified as analog, event-driven (digital, real,
user-defined), or hybrid (analog and event-driven) based on
their node types. Each input or output is of a specific type.
ISSPICE4 models may have either analog or event-driven node
types. An element that uses both analog and event-driven
nodal connections is called a “hybrid”. Elements which use
different node types must communicate through special
elements called “Node Bridges”. The following hybrids and
node bridges are supplied with ISSPICE4.

Model Type Device
Dac_bridge Digital-to-Analog Node Bridge
Adc_bridge Analog-to-Digital Node Bridge
D_to_real Digital-to-Real Node Bridge
Real_to_v Real-to-Analog Node Bridge
V_to_Real Analog-to-Real Node Bridge
D_osc Controlled Digital Oscillator
D_pwm Controlled Digital Pulse Width Modulator

See Chapter 4
for information
on node types.
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Digital-to-Analog Node Bridge

Format: Aname [Inputs N1.Nn-1] [Outputs Nn Nn+1.]  modname
.Model modname dac_bridge(pn1=pv1....)

Example: Abridge1  [7]  [2]  dac1
.Model dac1 dac_bridge(out_low = 0.7
+ out_high = 3.5 out_undef = 2.2
+ input_load = 5.0P t_rise = 50N f_fall = 20N)

The digital-to-analog bridge is the first of two node bridges
which were designed to transfer digital, event-driven, information
to analog values and back again. The second device is the
analog-to-digital bridge. The input to a  D-to-A bridge is a digital
state from a digital node. This value, by definition, may only be
0, 1 or U. The D-to-A bridge then outputs the value “out_low”,
“out_high” or “out_undef”, or ramps linearly toward one of these
“final” values from its current analog output level. The speed at
which this ramping occurs depends on the values of “t_rise”
and “t_fall”. These parameters are interpreted by the model
such that the rise or fall slope generated is always constant.

The dac_bridge determines the presence of the out_undef
parameter. If this parameter is not specified, and if the out_high
and out_low values are specified, then out_undef is assigned
the value of the arithmetic mean of out_high and out_low. This
simplifies coding of output buffers, where typically a logic family
will include an out_low and out_high voltage, but not an
out_undef value.

Since the D-to-A bridge accepts vector connections, multiple
signals can be translated with a single bridge. For example, a
two input two output D-to-A bridge could be written as:
“Abridge2  [a x]  [b y]  dac2”.

This model also posts an input load value (in farads) based on
the parameter input_load. However, the output of this model
does not respond to the total loading seen at its output.
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Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: d v
Allowed_Types: [d] [v,vd,i,id,d]
Vector: yes yes
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: out_low
Description: “analog output for ‘ZERO’ digital input”
Data_type: real
Default_Value: 0.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Parameter_Name: out_high
Description: “analog output for ‘ONE’ digital input”
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Parameter_Name: out_undef input_load
Description: “analog output for ‘U’ input” “input load (F)”
Data_Type: real real
Default_Value: (out_high - out_low)/2 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: t_rise t_fall
Description: “rise time” “fall time”
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1e-12 -] [1e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Analog-to-Digital Node Bridge

Format: Aname [Inputs N1.Nn-1] [Outputs Nn Nn+1.]  modname
.Model modname adc_bridge(pn1=pv1...)

Example: Abridge2 [1] [8] adc1
.Model adc_buff adc_bridge(in_low = 0.3
+ in_high = 3.5 rise_delay=10n)

The adc_bridge is one of two node bridges that have been
designed to allow transfer of analog information to digital values
and back again. The second device is the dac_bridge.

The input to an A-to-D bridge is an analog value from an analog
node. This value, by definition, may be in the form of a voltage,
or a current. If the input value is less than or equal to in_low,
then a digital output value of “0” is generated. If the input is
greater than or equal to in_high, a digital output value of “1” is
generated. If neither of these is true, then a digital “UNKNOWN”
state is generated. Note that unlike the case of the D-to-A
bridge, no ramping time or delay is associated with the A-to-D
bridge. Rather, the continuous ramping of the input value
provides for any associated delays in the digitized signal.

Since the A-to-D bridge accepts vector connections, multiple
signals can be translated with a single bridge. For example, a
two-input two-output A-to-D bridge could be written as:
“Abridge2  [a x]  [b y]  adc2”.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: v  d
Allowed_Types: [v,vd,i,id,d,vnam] [d]
Vector: yes yes
Vector_Bounds: -  -
Null_Allowed: no no
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Parameter Table
Parameter_Name: in_low
Description: “maximum 0-valued analog input”
Data_Type: real
Default_Value: 0.1
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Parameter_Name: in_high
Description: “minimum 1-valued analog input”
Data_Type: real
Default_Value: 0.9
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Parameter_Name: rise_delay fall_delay
Description: “rise delay” “fall delay”
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Digital-to-Real Node Bridge

Format: Aname Input Enable Output modname
.Model modname d_to_real(pn1=pv1 pn2=pv2)

Example: Atest1 1 2 3 d_to_real
.Model adc1 d_to_real(zero = 0.1 one=.9
+ delay=5N)

The digital-to-real bridge translates digital states into real
values. It accepts a digital value, 0, 1, or U, and creates a real-
valued output from the zero or one model parameters after the
specified delay. If the input is unknown, then the mean of the
zero and one values is used as output. The second node is an
enable that should be set to 0 (disable) or 1 (enable).

Port Table
Port_Name: in enable out
Description: “input” “enable” “output”
Direction: in in out
Default_Type: d d real
Allowed_Types: [d] [d] [real]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no yes no

Parameter Table
Parameter_Name: zero one delay
Description: “value for 0” “value for 1” “delay”
Data_Type: real real real
Default_Value: 0.0 1.0 1e-9
Limits: - - [1e-15 -]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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Real-to-Analog Node Bridge

Format: Aname Input Output modname
.Model modname real_to_v(pn1=pv1...)

Example: Atest1 1 2 rtv
.Model rtv real_to_v(gain = 1 transition_time=2N)

The real-to-analog bridge translates real values to analog
voltages. It accepts a real value and creates an analog output
that reflects the input, multiplied by the gain factor over the
transition time.

Port Table
Port_Name: in out
Description: “input” “output”
Direction: in out
Default_Type: real v
Allowed_Types: [real] [v, vd, i, id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: gain transition_time
Description: “gain” “output transition time”
Data_Type: real real
Default_Value: 1.0 1e-9
Limits: - [1e-15 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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x(t) x’(t)

c(t)

Analog-to-Real Node Bridge

Format: Aname Input Clock Output modname
.Model modname a_to_r2(pn1=pv1...)

Example: Atest1 1 2 rtv
.Model rtv a_to_r2(gain = 1 transition_time=2N)

The analog to real bridge is designed to translate analog
voltages to real values. It accepts an analog value and creates
a real output that reflects the input multiplied by the gain factor.

This model is essentialy an Impulse Sampler of the form:

where x(t) is a continuous input signal and c(t) is a impulse
modulator with

c(t) = S  s(t-nT) from -∞ to ∞

The output x’(t) is: S x(nT) s(t-nT) from -∞  to∞

where x(t) is an analog port, c(t) is a digital port, and x’(t) is a real
port

The input, x(t) is sampled at every positive clock edge, c(t). This
sample is multiplied by the gain parameter to create the output.
The output of this device is delayed one clock period, T.
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Port Table
Port_Name: in clk out
Description: “input” “clock” “output”
Direction: in in out
Default_Type: v d real2
Allowed_Types: [v] [d] [real2]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no no

Parameter Table
Parameter_Name: gain clk_delay
Description: “gain” “delay at clk”
Data_Type: real real
Default_Value: 1.0 1e-9
Limits: - [1e-15 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Controlled Digital Oscillator

Format: Aname Control_Input Output modname
.Model modname d_osc(pn1=pv1 pn2=pv2...)

Example: A5 1 8 var_clock
.Model var_clock d_osc(
+ cntl_freq_array = [-2,1K -1,1K 1,10K 2,10K]
+ duty_cycle = 0.4 init_phase = 180.0
+ rise_delay = 10N fall_delay=8N)

The digital oscillator is a hybrid model that accepts an analog
voltage or current input. This input is compared with the
voltage-to-frequency transfer characteristic specified by the
cntl_freq_array coordinate pairs, and obtains a frequency that
represents a linear interpolation of those pairs. A digital signal
is then produced with this fundamental frequency.

The cntl_freq_array values represent coordinate points on the
x and y axes, respectively, and normally represent voltage and
frequency pairings. There may be as few as two pairs specified,
or as many as memory and simulation speed allow. This
permits you to very finely approximate a nonlinear function of
frequency by entering multiple input-output coordinate points.
Cntl_freq_arrays with 2 x, y points will yield a linear variation of
frequency with respect to the control input. Greater array sizes
will yield a piecewise linear response.

The output waveform has rise and fall delays, which can be
specified independently. The duty cycle and the initial phase of
the waveform may also be set.

Port Table
Port Name: cntl_in out
Description: “control input” “output”
Direction: in out
Default_Type: v d
Allowed_Types: [v,vd,i,id] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
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Parameter Table
Parameter_Name: cntl_freq_array
Description: “control/freq array”
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
Vector_Bounds: [2 -]
Null_Allowed: no

Parameter_Name: duty_cycle init_phase
Description: “duty cycle” “initial phase of output”
Data_Type: real real
Default_Value: 0.5 0
Limits: [1e-6 0.999999] [-180.0 +360.0]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: rise_delay fall_delay
Description: “rise delay” “fall delay”
Data_Type: real real
Default_Value: 1e-9 1e-9
Limits: [0 -] [0 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Controlled Digital PWM

Format: Aname Input  Output  modname
.Model modname  d_pwm(pn1= pv1 pn2= pv2...)

Example: A5 1 8  pwm
.Model pwm d_pwm (cntl_pw_array = [0 .1 1 .9]
+ frequency = 1meg rise_delay = 10N
+ fall_delay=8N)

The digital pulse width modulator (PWM) is a hybrid code
model. It accepts an analog voltage or current input signal. This
input is compared with the piece-wise linear voltage-to-pulse
width transfer characteristic specified by the cntl_pw_array
coordinate pairs, and obtains a pulse width which represents a
linear interpolation of those pairs. A digital signal is then
produced with this pulse width at the frequency specified by the
frequency parameter.

The cntl_pw_array values represent coordinate points on the x
and y axes, respectively, and normally represent voltage and
frequency pairings. There may be as few as two pairs specified,
or as many as memory and simulation speed allow. This
permits you to very finely approximate a nonlinear function of
control signal versus pulse width by entering multiple input-
output coordinate points. Cntl_pw arrays with 2 x, y points will
yield a linear variation of frequency with respect to the control
input. Greater array sizes will yield a piece-wise linear response.

The output waveform has rise and fall delays which can be
specified independently.
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Port Table
Port Name: cntl_in out
Description: “control input” “output”
Direction: in out
Default_Type: v d
Allowed_Types: [v,vd,i,id] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: cntl_freq_array
Description: “control/freq array”
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
Vector_Bounds: [2 -]
Null_Allowed: no

Parameter_Name: duty_cycle
Description: “duty cycle”
Data_Type: real
Default_Value: 0.5
Limits: [0.01 0.99]
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Parameter_Name: rise_delay fall_delay
Description: “rise delay” “fall delay”
Data_Type: real real
Default_Value: 1e-9 1e-9
Limits: [0 -] [0 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Real Code Models

Real models differ from analog models in that they only store
continuous real values, not complex values, and are processed
by the event-driven simulation algorithm. The following real
models are provided with ISSPICE4.

Model Type Device
real_delay Z-Transform
real_gain Gain Block

Z-Transform Block (Real)

Format: Aname Input Clock Output modname
.Model modname real_delay(pn1=pv1)

Example: Atest1 1 2 3 delay
.Model delay real_delay(delay = 1u)

This hybrid block performs a unit delay specified by the delay
model parameter. The second node must be a digital signal,
while the first and last must be connected to real node types.

Port Table
Port_Name: in clk out
Description: “input” “clock” “output”
Direction: in in out
Default_Type: real d real
Allowed_Types: [real] [d] [real]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no no

Parameter Table
Parameter_Name: delay
Description: “delay from clk to out”
Data_Type: real
Default_Value: 1e-9
Limits: [1e-15 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
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Format: Aname Input Output modname
.Model modname real_gain(pn1=pv1)

Example: Atest1 1 2 gain1
.Model gain1 real_gain(in_offset=.1 gain=1
+ delay=10N IC=1)

This element provides a simple gain function for a real-valued
input. The output = gain * (input + in_offset) + out_offset and is
delayed by the delay model parameter.

Port Table
Port_Name: in out
Description: “input” “output”
Direction: in out
Default_Type: real real
Allowed_Types: [real] [real]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: in_offset gain out_offset
Description: “input offset” “gain” “output offset”
Data_Type: real real real
Default_Value: 0.0 1.0 0.0
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: delay ic
Description: “delay” “initial condition”
Data_Type: real real
Default_Value: 1.0e-9 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

GAIN BLOCK (REAL)
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Model Type Device
D_buffer Buffer
D_Inverter Inverter
D_And And
D_Nand Nand
D_Or Or
D_Nor Nor
D_Xor Xor
D_Xnor Xnor
D_Tristate Tristate
D_Pullup Pullup
D_Pulldown Pulldown
D_Open_C Open Collector
D_Open_E Open Emitter

Model Type Device
D_DFF D Flip Flop
D_JKFF JK Flip Flop
D_TFF Toggle Flip Flop
D_SRFF Set-Reset Flip Flop
D_Dlatch D Latch
D_SRlatch Set-Reset Latch
D_State State Machine
D_FDIV Frequency Divider
D_Ram RAM
D_Source Digital Source
NCO MIDI Digitally controlled

oscillator

Digital  Code Models

All digital code models are processed by the event-driven
simulator in IsSpice4. All digital nodes are initialized to ZERO
at the start of a simulation. All of the basic digital gates, flip-
flops, and latches drive their outputs with a STRONG digital
signal strength. In general, any unknown, or floating input will
cause an output to be unknown. Most digital elements allow
their rising and falling delays to be independently set.

The digital models post an input load value (in farads) which are
based on the parameter input_load. The outputs of these
models DO NOT, however, respond to the total loading it sees
on their output. Unless undefined, they will always drive their
outputs strongly with the delays specified by the delay-related
model parameters.

Note: In order to communicate with analog, real, or other user-
defined node types, node bridges must be used.

The following digital code models are included with ISSPICE4:
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BUFFER

Buffer

Format: Aname Input Output modname
.Model modname d_buffer(pn1=pv1...)

Example: A1 1 8 buff1
.Model buff1 d_buffer(rise_delay = 0.5N
+  fall_delay = 0.3N input_load = 0.5P)

The buffer is a single-input, single-output buffer that produces
a time-delayed copy of its input.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: rise_delay fall_delay input_load
Description: “rise delay” “fall delay” “input load value (F)”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-12
Limits: [1.0e-12 -] [1.0e-12 -] -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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Inverter

Format: Aname Input Output modname
.Model modname d_inverter(pn1=pv1...)

Example: A1 1 8 inv1
.Model inv1 d_inverter(rise_delay = 0.5N
+ fall_delay = 0.3N input_load = 0.5P)

The inverter is a single-input, single-output inverter that produces
an inverted, time-delayed copy of its input.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: rise_delay fall_delay input_load
Description: “rise delay” “fall delay” “input load value (F)”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-12
Limits: [1.0e-12 -] [1.0e-12 -] -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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And

Format: Aname [Input Bus Nodes: N1 N2..Nn]
+ Output: Nn+1 modname
.Model modname d_and(pn1=pv1...)

Example: A6 [1 2] 8 and1
.Model and1 d_and(rise_delay = 0.5N
+ fall_delay = 0.3N input_load = 0.5P)

The and gate is an n-input, single-output gate that produces an
active 1 value if, and only if, all of its inputs are also 1 values.
If one or more of the inputs is a 0, the output will also be a 0. If
neither of these conditions exists, the output will be unknown.
Note that since the input port type is a vector, any number of
inputs may be specified.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Parameter Table
Parameter_Name: rise_delay fall_delay input_load
Description: “rise delay” “fall delay” “input load value (F)”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-12
Limits: [1.0e-12 -] [1.0e-12 -] -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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Nand

Format: Aname [Input Bus Nodes: N1 N2..Nn]
+ Output: Nn+1 modname
.Model modname d_nand(pn1=pv1...)

Example: A1 [1 2 3] 8 nand1
.Model nand1 d_nand(rise_delay = 0.5N
+ fall_delay = 0.3N  input_load = 0.5P)

The nand gate is an n-input, single-output gate that produces
an active 0 value if and only if all of its inputs are 1. If one or more
of the inputs is a 1, the output will be a 0. If neither of these
conditions exists, the output will be unknown. Since the input
port type is a vector, any number of inputs may be specified.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Parameter Table
Parameter_Name: rise_delay fall_delay input_load
Description: “rise delay” “fall delay” “input load value (F)”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-12
Limits: [1.0e-12 -] [1.0e-12 -] -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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Or

Format: Aname [Input Bus Nodes: N1 N2..Nn]
+ Output: Nn+1 modname
.Model modname d_or(pn1=pv1...)

Example: A1 [1 2 3] 8 or1
.Model or1 d_or(rise_delay = 0.5N
+ fall_delay = 0.3N input_load = 0.5P)

The or gate is an n-input, single-output gate that produces an
active 1 if at least one of its inputs is a 1. The gate produces a
0 value if all inputs are 0. If neither of these two conditions
exists, the output is unknown. Note that since the input port type
is a vector, any number of inputs may be specified.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Parameter Table
Parameter_Name: rise_delay fall_delay input_load
Description: “rise delay” “fall delay” “input load value (F)”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-12
Limits: [1.0e-12 -] [1.0e-12 -] -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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Nor

Format: Aname [Input Bus Nodes: N1 N2..Nn]
+ Output: Nn+1 modname
.Model modname d_nor(pn1=pv1...)

Example: Anor12 [1 2 3 4] 8 nor12
.Model nor12 d_or(rise_delay = 0.5N
+ fall_delay = 0.3N input_load = 0.5P)

The nor gate is an n-input, single-output gate that produces an
active 0 value if at least one of its inputs is a 1 value. The gate
produces a 1 value if all inputs are 0; if neither of these two
conditions exists, the output is unknown. Since the input port
type is a vector, any number of inputs may be specified.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Parameter Table
Parameter_Name: rise_delay fall_delay input_load
Description: “rise delay” “fall delay” “input load value (F)”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-12
Limits: [1.0e-12 -] [1.0e-12 -] -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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Xor

Format: Aname [Input Bus Nodes: N1 N2..Nn]
+ Output: Nn+1 modname
.Model modname d_xor(pn1=pv1...)

Example: A9 [1 2] 8 xor3
.Model xor3 d_xor(rise_delay = 0.5N
+ fall_delay = 0.3N input_load = 0.5P)

The xor gate is an n-input, single-output gate that produces an
active 1 value if an odd number of its inputs are 1 values. Note
that since the input port type is a vector, any number of inputs
may be specified.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Parameter Table
Parameter_Name: rise_delay fall_delay input_load
Description: “rise delay” “fall delay” “input load value (F)”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-12
Limits: [1.0e-12 -] [1.0e-12 -] -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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Xnor

Format: Aname [Input Bus Nodes: N1 N2..Nn]
+ Output: Nn+1 modname
.Model modname d_xnor(pn1=pv1...)

Example: a9 [1 2] 8 xnor3
.Model xnor3 d_xnor(rise_delay = 0.5N
+ fall_delay = 0.3N input_load = 0.5P)

The xnor gate is an n-input, single-output gate that produces an
active 0 value if an odd number of its inputs are 1 values. It
produces a 1 output when an even number of 1 values occurs
on its inputs. Note that since the input port type is a vector, any
number of inputs may be specified.

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

Parameter Table
Parameter_Name: rise_delay fall_delay input_load
Description: “rise delay” “fall delay” “input load value (F)”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-12
Limits: [1.0e-12 -] [1.0e-12 -] -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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Tristate

Format: Aname Input Enable Output modname
.Model modname d_tristate(pn1=pv1...)

Example: A1 1 2 8 tri7
.Model tri7 ](delay = 0.5N
+ input_load = 0.5P enable_load = 0.5P)

The tristate is a simple tristate gate that can be configured to
allow for open-collector behavior, as well as standard tristate
behavior. The state of the input line is reflected in the output.
The state seen on the enable line determines the strength of the
output. Thus, a ONE forces the output to its state with a
STRONG strength. A ZERO forces the output to go to a
HI_IMPEDANCE strength. The delays associated with an
output state or strength change cannot be specified
independently, nor can they be specified independently for rise
or fall conditions. Other gate models may be used to provide
such delays, if needed.

Port Table
Port Name: in enable out
Description: “input” “enable” “output”
Direction: in in out
Default_Type: d d d
Allowed_Types: [d] [d] [d]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no no

Parameter Table
Parameter_Name: delay input_load enable_load
Description: “delay” “input load value (F)” “enable load value (F)”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-12 1.0e-12
Limits: [1.0e-12 -] - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Any
UNKNOWN or
floating input
causes the
output to
become
UNKNOWN.

Any
UNKNOWN
input on the
enable line
causes the
output to
become an
UNDETERMINED
strength.
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Pullup

Format: Aname Output modname
.Model modname d_pullup(pn1=pv1)

Example: A2 9 pullup1
.Model pullup1 d_pullup(load = 20P)

The pullup resistor is a device that emulates the behavior of an
analog resistance value that is tied to a high voltage level. The
pullup may be used in conjunction with tristate buffers to
provide open-collector wired “or” constructs, or any other
logical constructs that rely on a resistive pullup, which is
common to many tristated output devices.

Note: The output of this device is a logical 1. Hence, this device
may be connected to any digital node that requires a constant
high state.

Port Table
Port Name: out
Description: “output”
Direction: out
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: -
Null_Allowed: no

Parameter Table
Parameter_Name: load
Description: “load value (F)”
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
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Pulldown

Format: Aname Output modname
.Model modname d_pulldown(pn1=pv1)

Example: A4 9 pulldown1
.Model pulldown1 d_pulldown(load = 20P)

The pulldown resistor is a device which emulates the behavior
of an analog resistance value which is tied to a low voltage level.
The pulldown may be used in conjunction with tristate buffers
to provide open-collector wired “or” constructs, or any other
logical constructs which rely on a resistive pulldown which is
common to many tristated output devices.

The output of this device is a logical 0. Hence, this device may
be connected to any digital node that requires a constant low
state.

Port Table
Port Name: out
Description: “output”
Direction: out
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: -
Null_Allowed: no

Parameter Table
Parameter_Name: load
Description: “load value (F)”
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
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Open Collector

Format: Aname Input Output modname
.Model modname d_open_c(pn1=pv1...)

Example: A4 9 10 openc
.Model openc d_open_c(open_delay=5n
fall_delay=10n)

If the input to this device is a 1 then the output is a 1, with a
HI_IMPEDANCE strength. If the input is a 0, then the output is
a STRONG 0, otherwise, the output strength is
UNDETERMINED. The falling (fall_delay) and rising
(open_delay) delays may be specified independently.

Port Table
Port_Name: in out
Description: “input” “output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: open_delay fall_delay input_load
Description: “open delay” “fall delay” “input load value (F)”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-12
Limits: [1e-12 -] [1e-12 -] -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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Open Emitter

Format: Aname Input Output modname
.Model modname d_open_e(pn1=pv1
pn2=pv2..)

Example: a4 9 10 opene
.Model opene d_open_e(rise_delay=10n...)

If the input to this device is a 1, then the output is a 1 with a
STRONG. If the input is a 0, then the output is a HI_IMPEDANCE
0, otherwise, the output strength is UNDETERMINED. The
falling (open_delay) and rising (rise_delay) delays may be
specified independently.

Port Table
Port_Name: in out
Description: “input” “output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: rise_delay open_delay input_load
Description: “rise delay” “open delay” “input load value (F)”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-12
Limits: [1e-12 -] [1e-12 -] -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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D Flip Flop

Format: Aname Data_Input Clock Nset Nreset Data_Out
+ Inverted_Data_Out modname
.Model modname d_dff(pn1=pv1...)

Example: A7 1 2 3 4 5 6 dflop1
.Model flop1 d_dff(clk_delay = 13.0n
+ nset_delay = 25.0n nreset_delay = 27.0n
+ ic = 2 rise_delay = 10.0n fall_delay = 3n)

The d-type flip flop is a one-bit, edge-triggered storage element
which stores data whenever the clk input line transitions from
0 to 1. In addition, asynchronous set and reset signals exist,
and each of the three methods of changing the stored output of
the d-flip flop have separate load values and delays associated
with them. Additionally, you may specify separate rise and fall
delays that are added to those specified for the input lines.
These allow for more faithful reproduction of the output
characteristics of different IC fabrication technologies.

Any UNKNOWN input on the set or reset lines immediately
results in an UNKNOWN output.

Port Table
Port Name: data clk nset nreset
Description: “input data” “clock” “asynch. ~set” “asynch. ~reset”
Direction: in in in in
Default_Type: d d d d
Allowed_Types: [d] [d] [d] [d]
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: no no yes yes

Port Name: out Nout
Description: “data output” “inverted data output”
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Parameter Table
Parameter_Name: clk_delay nset_delay nreset_delay
Description: “delay from clk” “delay from set” “delay from reset”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -] [1.0e-12 -]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: ic data_load clk_load
Description: “output initial state” “data load (F)” “clk load (F)”
Data_Type: int real real
Default_Value: 0 1.0e-12 1.0e-12
Limits: [0 2] - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: nset_load nreset_load
Description: “set load value (F)” “reset load (F)”
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: rise_delay fall_delay
Description: “rise delay” “fall delay”
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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JK Flip Flop

Format: Aname J_Input K_Input Clock Set Reset
+ Data_Out Inverted_Data_Out modname
.Model modname d_jkff(pn1=pv1...)

Example: A8 1 2 3 4 5 6 7 jkflop2
.Model flop2 d_jkff(clk_delay = 13.0n
+ set_delay = 25.0n reset_delay = 27.0n
+ ic = 2 rise_delay = 10.0n fall_delay = 3n)

The jk-type flip flop is a one-bit, edge-triggered storage element
which will store data whenever the clk input line transitions from
low to high. In addition, asynchronous set and reset signals
exist, and each of the three methods of changing the stored
output of the jk-flip flop have separate load values and delays
associated with them. Additionally, you may specify separate
rise and fall delays that are added to those specified for the
input lines. This allows for a more faithful reproduction of the
output characteristics of different IC fabrication technologies.

Any UNKNOWN inputs, other than j or k, cause the output to
become UNKNOWN automatically.

Port Table
Port Name: j k clk set reset
Description: “j input” “k input” “clock” “asynch. set” “asynch. reset”
Direction: in in in in in
Default_Type: d d d d d
Allowed_Types: [d] [d] [d] [d] [d]
Vector: no no no no no
Vector_Bounds: - - - - -
Null_Allowed: no no no yes yes

Port Name: out Nout
Description: “data output” “inverted data output”
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds - -
Null_Allowed: yes yes
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Parameter Table
Parameter_Name: clk_delay set_delay reset_delay
Description: “delay from clk” “delay from set” “delay from reset”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -] [1.0e-12 -]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: ic jk_load clk_load
Description: “output initial state” “j,k load (F)” “clk load (F)”
Data_Type: int real real
Default_Value: 0 1.0e-12 1.0e-12
Limits: [0 2] - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: set_load reset_load
Description: “set load value (F)” “reset load (F)”
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: rise_delay fall_delay
Description: “rise delay” “fall delay”
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Toggle Flip Flop

Format: Aname T_Input Clock Set Reset Data_Out
+ Inverted_Data_Out modname
.Model modname d_tff(pn1=pv1...)

Example: A8 2 12 4 5 6 3 tflop3
.Model flop3 d_tff(clk_delay = 13.0n ic = 2
+ set_delay = 25.0n reset_delay = 27.0n
+ rise_delay = 10n fall_delay = 3n t_load = 0.2p)

The toggle-type flip flop is a one-bit, edge-triggered storage
element that will toggle its current state whenever the clk input
line transitions from 0 to 1. In addition, asynchronous set and
reset signals exist, and each of the three methods of changing
the stored output of the t-flip flop have separate load values
and delays associated with them. Additionally, you may specify
separate rise and fall delay values that are added to those
specified for the input lines. This allows for a more faithful
reproduction of the output characteristics of different IC
fabrication technologies.

Port Table
Port Name: t clk set reset
Description: “toggle input” “clock” “asynch. set” “asynch. reset”
Direction: in in in in
Default_Type: d d d d
Allowed_Types: [d] [d] [d] [d]
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: no no yes yes

Port Name: out Nout
Description: “data output” “inverted data output”
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Any
UNKNOWN
inputs other
than t
immediately
cause the
output to
become
UNKNOWN.
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Parameter Table
Parameter_Name: clk_delay set_delay reset_delay
Description: “delay from clk” “delay from set” “delay from reset”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -] [1.0e-12 -]
Vector: no no no
Vector_Bounds - - -
Null_Allowed: yes yes yes

Parameter_Name: ic t_load clk_load
Description: “output initial state” “toggle load (F)” “clk load (F)”
Data_Type: int real real
Default_Value: 0 1.0e-12 1.0e-12
Limits: [0 2] - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: set_load reset_load
Description: “set load value (F)” “reset load (F)”
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: rise_delay fall_delay
Description: “rise delay” “fall delay”
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Set-Reset Flip Flop

Format: Aname S_Input R_Input Clock Set Reset
+ Data_Out Inverted_Data_Out modname
.Model modname d_srff(pn1=pv1...)

Example: A8 2 12 4 5 6 3 14 srflop7
.Model flop7 d_srff(clk_delay = 13.0n
+ set_delay = 25.0n reset_delay = 27.0n
+ ic = 2 rise_delay = 10.0n fall_delay = 3n)

The set-reset type flip flop is a one-bit, edge-triggered storage
element that will store data whenever the clk input line transitions
from 0 to 1. The stored value (i.e., the “out” value) will depend
on the s and r inputs, and will be:

out=ONE if s=ONE and r=ZERO;
out=ZERO if s=ZERO and r=ONE;
out=previous value if s=ZERO and r=ZERO;
out=UNKNOWN if s=ONE and r=ONE;

In addition, asynchronous set and reset signals exist, and each
of the three methods of changing the stored output of the set-
reset flip flop has separate load values and delays associated
with them. You may also specify separate rise and fall delay
values that are added to those specified for the input lines. This
allows for a more faithful reproduction of the output
characteristics of different IC fabrication technologies.

Any UNKNOWN inputs, other than s and r, immediately cause
the output to become UNKNOWN.

Port Table
Port Name: s r clk set reset
Description: “set” “reset” “clock” “asynch. set” “asynch. reset”
Direction: in in in in in
Default_Type: d d d d d
Allowed_Types: [d] [d] [d] [d] [d]
Vector: no no no no no
Vector_Bounds: - - - - -
Null_Allowed: no no no yes yes
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Port Name: out Nout
Description: “data output” “inverted data output”
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter Table
Parameter_Name: clk_delay set_delay reset_delay
Description: “clk delay” “set delay” “reset delay”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -] [1.0e-12 -]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: ic sr_load clk_load
Description: “output initial state” “s r load (F)” “clk load (F)”
Data_Type: int real real
Default_Value: 0 1.0e-12 1.0e-12
Limits: [0 2] - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: set_load reset_load rise_delay fall_delay
Description: “a.set load (F)” “a.reset load (F)” “rise delay” “fall delay”
Data_Type: real real real real
Default_Value: 1.0e-12 1.0e-12 1.0e-9 1.0e-9
Limits: - - [1.0e-12 -] [1.0e-12 -]
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes
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D Latch

Format: Aname Data_Input Enable Set Reset Data_Out
+ Inverted_Data_Out modname
.Model modname d_dlatch(pn1=pv1...)

Example: A4 12 4 5 6 3 14 dlatch1
.Model latch1 d_dlatch(data_delay = 13n
+ enable_delay = 22n set_delay = 25n
+ reset_delay = 27n ic = 2 rise_delay = 10n
+ fall_delay = 3n)

The d-type latch is a one-bit, level-sensitive storage element
that will output the value on the data line when the enable input
line is high. The value on the data line is held on the out line
when the enable line is low.

In addition, asynchronous set and reset signals exist, and each
of the four methods of changing the stored output of the D latch
(i.e., data changing with enable=ONE, enable changing to
ONE from ZERO with a new value on data, raising set and
raising reset) has separate delays associated with them. You
may also specify separate rise and fall delays that are added to
those specified for the input lines. This allows for a more faithful
reproduction of the output characteristics of different IC
fabrication technologies.

Any UNKNOWN inputs, other than on the data line when
enable=ZERO, cause the output to become UNKNOWN.

Port Table
Port Name: data enable set reset
Description: “data in” “enable in” “set” “reset”
Direction: in in in in
Default_Type: d d d d
Allowed_Types: [d] [d] [d] [d]
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: no no yes yes
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Port Name: out Nout
Description: “data output” “inverter data output”
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter Table
Parameter_Name: data_delay enable_delay set_delay reset_delay
Description: “data delay” “enable delay” “s delay” “r delay”
Data_Type: real real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -] [1.0e-12 -] [1.0e-12 -]
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes

Parameter_Name: ic data_load enable_load
Description: “output initial state” “data load (F)” “enable load (F)”
Data_Type: int real real
Default_Value: 0 1.0e-12 1.0e-12
Limits: [0 2] - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: set_load reset_load rise_delay fall_delay
Description: “set load (F)” “reset load (F)” “rise delay” “fall delay”
Data_Type: real real real real
Default_Value: 1.0e-12 1.0e-12 1.0e-9 1.0e-9
Limits: - - [1.0e-12 -] [1.0e-12 -]
Vector: no no no no
Vector_Bounds: - - - -
Null_Allowed: yes yes yes yes
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Set-Reset Latch

Format: Aname S_In R_In Enable Set Reset Data_Out
+ Inverted_Data_Out modname
.Model modname d_srlatch(pn1=pv1...)

Example: A4 12 4 5 6 3 14 16 srlatch2
.Model latch2 d_srlatch(sr_delay = 13n
+ enable_delay = 22n set_delay = 25n
+ reset_delay = 27n ic = 2 rise_delay = 10n)

The set-reset type latch is a one-bit, level-sensitive storage
element that will output the value dictated by the state of the s
and r pins whenever the enable input line is high. This value is
held at the output whenever the enable line is low. The particular
value chosen is as shown below:

s=ZERO, r=ZERO out=no change in output
s=ZERO, r=ONE out=ZERO
s=ONE, r=ZERO out=ONE
s=ONE, r=ONE out=UNKNOWN

Asynchronous set and reset signals exist, and each of the four
methods of changing the stored output of the set-reset latch
(i.e., s/r combination changing with enable=ONE, enable
changing to ONE from ZERO with an output-changing
combination of s and r, raising set and raising reset) have
separate delays associated with them. You may also specify
separate rise and fall delays, which are added to those specified
for the input lines. This allows for a more faithful reproduction
of the output characteristics of different IC fabrication
technologies.

Port Table
Port Name: s r enable set reset
Description: “set” “reset” “enable” “asynch set” “asynch reset”
Direction: in in in in in
Default_Type: d d d d d
Allowed_Types: [d] [d] [d] [d] [d]
Vector: no no no no no
Vector_Bounds: - - - - -
Null_Allowed: no no no yes yes
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Port Name: out Nout
Description: “data output” “inverted data output”
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: sr_delay enable_delay set_delay
Description: “s/r delay” “enable delay” “asynch s delay”
Data_Type: real real real
Default_Value: 1.0e-9 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -] [1.0e-12 -]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: reset_delay ic
Description: “asynch r delay” “output initial state”
Data_Type: real int
Default_Value: 1.0e-9 0
Limits: [1.0e-12 -] [0 2]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: sr_load enable_load set_load
Description: “s/r input loads (F)” “enable load (F)” “set load (F)”
Data_Type: real real real
Default_Value: 1.0e-12 1.0e-12 1.0e-12
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: reset_load rise_delay fall_delay
Description: “reset load (F)” “rise delay” “fall delay”
Data_Type: real real real
Default_Value: 1.0e-12 1.0e-9 1.0e-9
Limits: - [1.0e-12 -] [1.0e-12 -]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
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State Machine

Format: Aname [Input Bus Nodes: N1... Nn-2] Clock
+ Reset [Out Bus Nodes: Nn+1... Nm]
+ modname
.Model modname d_state(pn1=pv1...)

Example: A4 [2 3 4 5] 1 12 [22 23 24 25 26 27 28 29] state1
.Model state1 d_state(clk_delay = 13N
+ reset_delay = 27N state_file = newstate.txt
+ reset_state = 2)

The state machine provides for straight forward descriptions of
clocked combinational logic blocks with a variable number of
inputs and outputs and an unlimited number of states. The
model can be configured to behave as virtually any type of
counter or clocked combinational logic block and can be used
to replace very large sections of digital circuits with an identically
functional but faster representation.

The inputs consist of a vector set of inputs, a single clock, a
single reset line, and a vector set of outputs. The clk_delay
parameter specifies the time after the POSITIVE clk signal
edge that the outputs will transition. The reset_delay parameter
specifies the time after the POSITIVE reset signal edge that the
outputs will transition to the state number defined by the
reset_state parameter.

The state machine is configured through the use of a separate
ASCII state definition text file. This file should be located in your
current working directory. It can be created and edited with any
text editor such as Word, DOS Edit, or ISEd. The filename is
arbitrary but must match the state_file model parameter string.
You may add a path to the file, i.e. “C:\MyFiles\newstate.txt”.

The search path for the state transition file takes the following
route; first IsSpice4 looks in the explicit path, if one is stated,
then it looks in you current working directory, then it looks in the
directory designated by the ISLIB environment variable, if one
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is entered, and lastly IsSpice4 looks in the IsSpice4 executable
directory (SPICE8\IS).

The file defines all states to be understood by the model, plus
input bit combinations which trigger changes in state. An
example state file is shown next.

This is an example state input file that defines a simple 2-bit
counter (2 outputs) with one input signal. The value of this input
determines whether the counter counts up (in = 1) or down (in
= 0). When used with the example on the previous page, this file
would be saved as “newstate.txt”.

Strengths
s=strong

u=undetermined
r=resistive

z=hi_impedance

* This is an example state input file
* that define a 2-bit up/down counter.
*The entries have been spaced for easy reading
*Present Outputs Input(s) Destination
*State @this State

0 0s 0s 0 3
1 1

1 0s 1z 0 0
1 2

2 1z 0s 0 1
1 3

3 1z 1z 0 2
1 0

Input(s) are those input signals that when clocked by a positive
edge on the clk input, will give the states listed in the Destination
column. For example, if the machine is in the 1 state and the
input is a 1, then at the next positive clk edge, the outputs will
be set to 1z and 0s (state 2).

Several attributes of the above file structure should be noted.
First, ALL LINES IN THE FILE MUST BE ONE OF FOUR
TYPES. These are:
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A header line, which is a complete description of the current
state, the outputs corresponding to that state, an input value,
and the state that the model will assume if that input is
encountered. The first line of a state definition must ALWAYS
be a header line.

A continuation line, which is a partial description of a state,
consisting of an input value and the state that the model will
assume if that input is encountered. Note that continuation lines
may only be used after the initial header line definition for a
state.

A line containing nothing but white space (space, formfeed,
newline, carriage return, tab, vertical tab).

A comment, beginning with a “*” in the first column.

A line that is not one of the above will cause a file-loading error.
In the example shown, white space (any combination of blanks,
tabs, commas) is used to separate values, and the characters
“->” are used to underline the state transition that is implied by
the input that precedes it. This particular character is not critical,
and may be replaced with any other character or non-broken
combination of characters (e.g. “==>”, “>>”, “:”, etc.)

The order of the output and input bits in the file is important; the
first column is always interpreted as the “zeroth” bit of input and
output. Thus, in the file above, the output from state 1 sets out[0]
to “0s”, and out[1] to “1z”.

The state numbers don’t need to be in any particular order, but
a state definition that consists of the sum total of all lines, which
define the state, its outputs, and all methods by which a state
can be exited, must be made on contiguous line numbers. A
single state definition cannot be broken into sub-blocks and
distributed randomly throughout the file. On the other hand, the
state definition may be broken up by as many comment lines as
you desire.
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Port Table
Port Name: in clk reset out
Description: “input” “clock” “reset” “output”
Direction: in in in out
Default_Type: d d d d
Allowed_Types: [d] [d] [d] [d]
Vector: yes no no yes
Vector_Bounds: [1 -] - - [1 -]
Null_Allowed: yes no yes no

Parameter Table
Parameter_Name: clk_delay reset_delay state_file
Description: “CLK delay” “RESET delay” “state definition file name”
Data_Type: real real string
Default_Value: 1.0e-9 1.0e-9 “state.txt”
Limits: [1.0e-12 -] [1.0e-12 -] -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes no

Parameter_Name: input_load clk_load reset_load
Description: “input load (F)” “clock load (F)” “reset load (F)”
Data_Type: real real real
Default_Value: 1.0e-12 1.0e-12 1.0e-12
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

Parameter_Name: reset_state
Description: “default state on RESET & at DC”
Data_Type: int
Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: no
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Frequency Divider

Format: Aname Freq_Input Freq_Output modname
.Model modname d_fdiv(pn1=pv1...)

Example: A4 3 7 divider
.Model divider d_fdiv(div_factor=5 high_cycles=3
+ i_count = 4 rise_delay = 23n fall_delay = 9n)

The frequency divider is a programmable step-down divider,
which accepts an arbitrary divisor (div_factor), a duty-cycle
term (high_cycles), and an initial count value (i_count). The
generated output is synchronized to the rising edges of the
input signal. The rise and fall delay of the output may also be
specified independently.

Port Table
Port Name: freq_in freq_out
Description: “freq. input” “freq. output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: div_factor high_cycles
Description: “divide factor” “# of cycles for high out”
Data_Type: int int
Default_Value: 2 1
Limits: [1 -] [1 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Parameter_Name: i_count freq_in_load
Description: “divider initial count value” “freq_in load (F)”
Data_Type: int real
Default_Value: 0 1.0e-12
Limits: [0 -] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: rise_delay fall_delay
Description: “rise delay” “fall delay”
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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RAM

Format: Aname [Data_In Nodes: N1... Nn-2]
+ [Data_Out Nodes: Nn-1... Nn]
+ [Address Nodes: Nn+1... Nm-1]
+ Write_Enable [Select Nodes: Nm+1... Nz]
+ modname
.Model modname d_ram(pn1=pv1...)

Example: A4 [3 4 5 6] [3 4 5 6] [12 13 14 15 16 17 18 19]
30
+ [22 23 24] ram2
.Model ram2 d_ram(select_value = 2 ic = 1
+ read_delay = 80n)

RAM is an M-wide, N-deep random access memory element
with programmable select lines, tristated data out lines, and a
single write/read line. The width of the RAM words (M) is set by
the number of inputs detected by the d_ram code model. The
depth of the RAM (N) is set by the number of address lines that
are input to the device. The value of N is related to the number
of address input lines (P) by the following equation:

2P = N

There is no reset line for the device. However, an initial value
for all bits may be specified by setting the IC parameter to either
0 or 1. When reading, a word from the ram output will not appear
until read_delay is satisfied. Separate rise and fall delays are
not supported for this device.

UNKNOWN inputs on the address lines are not allowed during
a write. In the event that an address line does indeed go
unknown during a write, THE ENTIRE CONTENTS OF THE
RAM WILL BECOME UNKNOWN. This is in contrast to the
data_in lines that become unknown during a write; in that case,
only the selected word will be corrupted, and it will be corrected
once the data lines settle back to a known value. Protection is
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added to the write_en line such that extended UNKNOWN
values on that line are interpreted as ZERO values. This is the
equivalent of a read operation and will not corrupt the contents
of the RAM. A similar mechanism exists for the select lines. If
they are unknown, then it is assumed that the chip is not
selected.

Detailed timing-checking routines are not provided in this
model, other than for the enable_delay and select_delay
restrictions on read operations. You are advised, therefore, to
carefully check the timing into and out of the RAM for correct
read and write cycle times, setup and hold times, etc. for the
particular device you are attempting to model.

Port Table
Port Name: data_in data_out
Description: “data input line(s)” “data output line(s)”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes yes
Vector_Bounds: [1 -] [1 -]
Null_Allowed: no no

Port Name: address write_en select
Description: “address input line(s)” “write enable line” “chip select line(s)”
Direction: in in in
Default_Type: d d d
Allowed_Types: [d] [d] [d]
Vector: yes no yes
Vector_Bounds: [1 -] - [1 16]
Null_Allowed: no no no

Parameter Table
Parameter_Name: select_value ic
Description: “decimal active value “initial bit state @ dc”

for select line comparison”
Data_Type: int int
Default_Value: 1 2
Limits: [0 32767] [0 2]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes



315

CHAPTER 9 - CODE MODEL SYNTAX

Parameter Table
Parameter_Name: read_delay select_load
Description: “read delay from “select load value (F)”

address/select/write_en active”
Data_Type: real real
Default_Value: 100.0e-9 1.0e-12
Limits: [1.0e-12 -] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: data_load address_load
Description: “data_in load (F)” “addr. load (F)”
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Parameter_Name: enable_load
Description: “enable line load value (F)”
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
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Digital Source

Format: Aname [N1...Nn] modname
.Model modname d_source(pn1=pv1...)

Example: A1 [1 2 3 4 5 6 7 8] input
.Model input  d_source(input_file = source.txt)

The digital source provides for straightforward descriptions of
digital signal vectors in a tabular format. The model reads input
from an ASCII text file and, at the times specified in the file,
generates the inputs along with the strengths listed. This file
should be located in your current working directory. It can be
created and edited with any text editor such as Word, DOS Edit,
or IsEd. The filename is arbitrary, but must match the input_file
model parameter string. The format of the input file is as shown
below. Comment lines are delineated via a single “*” character
in the first column of a line.

*This is an example state input file
* T c n n n . . .
* i l o o o . . .
* m o d d d . . .
* e c e e e . . .
* k a b c . . .

0.0000 Uu Uu Us Uu . . .
1.234e-9 0s 1s 1s 0z . . .
1.376e-9 0s 0s 1s 0z . . .
2.5e-7 1s 0s 1s 0z . . .
2.506e-7 1s 1s 1s 0z . . .
5.0e-7 0s 1s 1s 0z . . .

Note that in the example shown, white space (any combination
of blanks, tabs, commas) is used to separate the time and
strength/state tokens. The order of the input columns is
important. The first column is always interpreted as “time”. The
remaining columns are the desired outputs, and must match
the order of the output nodes on the call line.

Strengths
s=strong

u=undetermined
r=resistive

z=hi_impedance
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A non-commented line, which does not contain enough tokens
to completely define all outputs for the digital source, will cause
an error. Also, time values must increase monotonically or an
error will result in reading the source file. Errors will also occur
if a line in the source file is neither a comment nor a vector line.
The only exception to this is in the case of a line that is
completely blank.

Port Table
Port Name: out
Description: “output”
Direction: out
Default_Type: d
Allowed_Types: [d]
Vector: yes
Vector_Bounds: -
Null_Allowed: no

Parameter Table
Parameter_Name: input_file input_load
Description: “input filename” “input load (F)”
Data_Type: string real
Default_Value: “source.txt” 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
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Format: Aname [Input Control Nodes: N1 N7] Output N8
+ modname
.Model modname nco(pn1=pv1...)

Example: Atest1 1 2 nco1
.Model nco1 nco(delay=1.0N Mult_Factor=16 )

The MIDI VCO (NCO model) is an oscillator that produces a
square wave whose frequency is based on a digital input. Both
the input and output ports are vectors, but the input must
consist of seven bits (MIDI note). MIDI notes are numbered
between zero and 127 (Bit 1 is the MSB). Note: number zero
corresponds to a C 5 octaves below middle C. There are 12
notes per octave, so a middle C (that is 261.62 Hz) is note
number 60. A440 (A above middle C) is note number 69, and
so forth. Square waves of different frequencies can be produced
by changing the bit pattern and the mult_factor.

Port Table
Port_Name: in out
Description: “program input” “oscillator output”
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [7 7] -
Null_Allowed: no no

Parameter Table
Parameter_Name: delay mult_factor
Description: “output delay” “freq multiplier”
Data_Type: real real
Default_Value: 1e-9 1
Limits: [1e-15 -] [1e-9 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

MIDI DIGITALLY CONTROLLED OSCILLATOR
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This chapter contains a complete list of the commands that
control IsSpice4. The syntax used here follows the same format
as that of the previous chapter.

Format:        .PRINT type var1 [var2 ... varn]
                     .AC [DEC] [OCT] [LIN] np fstart fstop

Examples:   .PRINT TRAN V(1)
                    .AC DEC 10 10 10MEG

The dot, “.” preceding the command is required for all commands.
Any exceptions are clearly stated. Items in italics must be
replaced by user-defined data.

•   For example, for the .PRINT statement, type, var1, var2, and
    so on, would be replaced with user-defined data.

The following description and examples will further clarify the
required data.

Analysis Syntax



320

.DC - DC Sweep Analysis

Format: .DC src start stop del [src2 start2 stop2 del2]

Examples: .DC VIN 0.25 5.0 0.25
.DC VDS 0 10 .5 VGS 0 5 1
.DC VCE 0 10 .25 IB 0 10U 1U

Summary: The .DC statement is a special subset of IsSpice4’s
DC analysis features. It is used to perform a series of DC
operating points by sweeping voltage and/or current sources
and performing a DC operating point at each step value of the
source(s). At each step, voltages, currents, and a variety of
device/model parameters can be recorded.

Syntax: The .DC line defines the source that is to be swept, and
the sweep limits. Src is the name of the independent voltage or
current source that will be swept. Start, stop, and del are the
first, last, and incremental values, respectively. The first example
will cause the value of the voltage source VIN to be swept  from
0.25 Volts to 5.0 Volts in increments of 0.25 Volts. A second
source (src2) may optionally be specified with associated
sweep parameters (second example). In this case, the first
source, VDS, will be swept over its range for each value of the
second source, VGS.

The .DC statement overrides any DC voltage that is specified
in the actual voltage/current source statement. The DC voltage
on the V or I line will be used during the AC analysis and unless
there is a transient specification, during the transient analysis.
But when the DC sweep is run, the values that are specified in
the .DC statement will prevail.

Getting Output: To generate output, the .DC statement must
be accompanied by a .PRINT or .VIEW statement. Acceptable
output variables are voltages, currents and computed device/
model parameters. For example, .PRINT DC V(4) @R1[i],
which was used with the first example .DC statement above,
will yield VIN vs. V(4) and VIN vs. the current through R1.
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.OP - Operating Point

Format: .OP

Summary: The inclusion of this line in an input file will force
IsSpice4 to determine the quiescent DC operating point of the
circuit with inductors shorted and capacitors opened. An
operating point is automatically calculated prior to a transient
analysis to determine the transient initial conditions, and prior
to an AC, noise, or distortion analysis in order to determine the
linearized, small-signal models for nonlinear devices. If a
transient analysis is run with the UIC option, no DC operating
point will be performed unless an AC analysis is run.

Syntax: .OP forces a DC operating point.

Getting Output: The operating point voltages for all nodes and
voltage source currents are recorded in the output file when a
.OP statement is included in the netlist. If no .OP is included,
then only the voltages for the top-level circuit nodes will be
saved in the output file. The operating point values for voltages,
currents, and device/model parameters can also be viewed
interactively by accessing the Select Measurements dialog
from the IsSpice4 Simulation Control window.

Getting Device/Model Parameter Information
There are two functions, Show and Showmod,

 provide access to the operating point information (SPICE 2
style) associated with devices and models. The Show and
Showmod commands are explained in Chapter 11. Appendix
B lists all of the device and model parameters that are available.
The following example will give the operating point information
for the entire circuit.

.control <- beginning of control block
op <- performs an operating point
show all <- saves operating point info on all devices
.endc <- end of control block

The .OP
statement
should be used
to obtain the
DC operating
point if no other
analysis is run.

The .OP data is
listed in the
output file.

ICL commands
like Show and
Showmod may
be executed
from the
Simulation
Control dialog
in the script
window.
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.TF - Transfer Function

Format: .TF output input

Examples: .TF V(5,3) VIN
.TF I(VLOAD) VIN

Summary: The .TF statement produces the value of the DC
transfer function between any output node and any independent
source, along with the resistance at the input and output.

Syntax: Output is the small-signal output variable and can be
any node number or name using the format v(#) or v(name).
Input is the small-signal input independent source.

Getting Output: .TF generates output without the need for a
.PRINT statement. For the first example, IsSpice4 would
compute the DC transfer function ratio of V(5,3) to VIN, the input
impedance looking into the circuit at VIN, and the output
impedance measured across nodes 5 and 3.

.Nodeset - Initial Node Voltages

Format: .NODESET V(n1)=val1 [...V(nj)=valj]

Examples: .NODESET V(3)=5V

Summary: The .NODESET statement is used to specify the
node voltage values for the first pass of the DC operating point
analysis. The voltage suggestions are then released and the
Newton-Raphson iteration process continues to a stable DC
solution. The voltage values help IsSpice4 find the DC operating
point. This statement may be necessary for convergence on
bistable or astable circuits.

Syntax: The .NODESET line defines the voltage nodes and
their associated values. The node specification may use any
node number or name with the format v(#) or v(name).

The .TF data is
listed in the
output file.

See Appendix A
for more
information on
solving
convergence
problems.
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.AC - Small-Signal Frequency Analysis

Format: .AC [DEC] [OCT] [LIN] np fstart fstop

Special Requirement: The AC analysis requires at least one
voltage or current source in the circuit to have the AC magval
(magnitude value) stimulus. For example: V1 1 0 AC 1.

Examples: .AC DEC 10 1 10K
.AC OCT 10 1K 100MEG
.AC LIN 100 1 100HZ

Summary: This analysis computes a small-signal linear
frequency analysis with all nonlinear parameters linearized
about the circuit's DC operating point. The magnitude, phase,
real , or imaginary values of any voltage, current, or device/
model parameter can be recorded.

Syntax: The .AC statement is used to define the frequency
band to simulate, as well as the method for recording data. Data
may be recorded by octave, by decade, or linearly over the
entire spectrum. The recording method is determined by the
keyword, DEC, OCT, or LIN, that is specified. Only one keyword
may be specified. The number of frequency points is determined
by the np value. For example, DEC 10 will record 10 points per
decade. LIN 100 will record 100 points over the entire frequency
span. Fstart is the starting frequency in Hz, and fstop is the final
frequency in Hz.

As stated above, at least one independent source must have
the AC keyword. The stimulus magnitude is normally set to 1 so
that output variables have the same value as the transfer
function of the output variable with respect to the input.

In some cases, such as filter design, it is customary to set the
AC magnitude to 2. This is so the combination of the voltage
source and matching source impedance deliver a 1 volt
magnitude to the circuit.

The AC
magnitude
value in the
voltage/current
source
statement
should normally
be set to one.

See the
Independent
source syntax
for more
information.



324

.NOISE - SMALL-SIGNAL NOISE ANALYSIS

Getting Output: To generate output, the .AC statement must
be accompanied by a .PRINT or .VIEW statement. Outputs
may be voltages, currents, or device/model parameters. The
magnitude, magnitude in dB, phase, real, or imaginary values
of these quantities can be recorded using the .PRINT AC
statement along with various postfix notation. For example,

.PRINT AC V(5) VDB(5) VP(5) VR(5) VI(5)

will record all the types of data for node 5 vs. frequency. Note:
V(5) is equivalent to the SPICE 2 notation VM(5) (magnitude of
V(5)). The VM notation is not accepted by IsSpice4. Other
combinations can be formed with the ICL Alias function:

.control
alias  vmagdiff  mag(v(4) - v(3)) <- magnitude of the voltage difference
alias  realdiv  real(v(4) - v(3)) / imag(v(1)) <- Real(V4,3)/Imaginary(V(1))
.endc
.PRINT AC VMAGDIFF REALDIV <- Save the data in the output file

Note: Only the magnitude waveforms that are stated in the
.PRINT/.VIEW AC statements, and in the ICL view statements,
are displayed in real time. The displayed waveforms will be
shown with DB scaling, therefore it is not necessary to use the
DB notation (VDB(5)).

.Noise - Small-Signal Noise Analysis

Format: .NOISE V(output [,ref]) src [DEC] [LIN] [OCT]
+ np fstart fstop [ptspersummary]

Special Requirement: The noise analysis requires at least
one voltage or current source in the circuit to have the AC
magval (magnitude value) stimulus. For example: V1 1 0 AC 1.
It is strongly advised that you set the AC magnitude equal to 1,
since the analysis is linear and is not affected by source
amplitude.

Examples: .NOISE V(5) VIN DEC 10 1kHZ 100MEGHz
.NOISE V(5,3) V1 OCT 8 1.0 1.0E6 1

See the .PRINT
statement for
more
information on
postfix notation.

Note: This
syntax differs
from that used
in previous
IsSpice
versions.
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Summary: The noise analysis calculates the noise contributions
from resistors and active devices with respect to an output node
voltage. It also calculates the level of input noise from the
specified input source, that will generate the equivalent output
noise. This is performed for every frequency point in a specified
range. A report on the total noise, which is contributed by each
noise source, is available in the output file.

Syntax: Output is the node at which the total output noise is
desired; if ref is specified, then the noise voltage (V(output)-
V(ref)) is calculated. By default, ref is assumed to be ground.
Src is the name of an independent source to which the input
noise is referred. Np, fstart and fstop are .AC type parameters
that specify the frequency range over which the noise data will
be calculated, and the number of data points that will be
collected. Ptspersummary is an optional flag; if included, it
causes the total noise contributions of each noise source in the
circuit, over the specified frequency range, to be produced.

Note: In SPICE 2, the .NOISE analysis was done in conjunction
with the AC analysis. In IsSpice4, the noise analysis does not
require a .AC statement.  Also in SPICE2, the .NOISE analysis
uses an overall circuit temperature value.  In IsSpice4, individual
part temperatures are used in NOISE calculations, unless
option .NOISETEMP is set, in which case the overall circuit
temperature is used.

Getting Output: To generate output, the noise statement must
be accompanied by a .PRINT NOISE INOISE ONOISE
statement. The print statement produces the noise spectral
density input and output curves over the specified frequency
range. Set Ptspersummary to 1 to generate the total noise
contributions from each source. All noise voltages/currents are
in squared units (V2/Hz and A2/Hz for spectral density, V2 and
A2 for integrated noise) to maintain consistency.

Plots Pop-up: As stated above, two kinds of analyses are
performed when a .NOISE analysis is requested; noise spectral
density curves and the total integrated noise contributions from
each component. Therefore, the Plots pop-up in the Simulation
Control window will show two plot entries, one for each analysis.

The noise
analysis
requires the
presence of the
AC keyword.

The noise
analysis does
not require an
AC analysis.

Resistors have
thermal noise.
Semiconductor
devices
produce shot
noise, flicker
noise, and burst
noise.
Capacitors,
inductors, and
controlled
sources are
noise-free.

To remove a
resistor’s
thermal noise
from the noise
calculation set
its temperature
to -273.15



326

.DISTO - SMALL-SIGNAL DISTORTION ANALYSIS

.Disto - Small-Signal Distortion Analysis

Format: .DISTO [DEC] [OCT] [LIN] np fstart fstop
+ [f2overf1]

Special Requirement: The distortion analysis requires at least
one voltage or current source in the circuit to have either the
DISTOF1 or DISTOF2 keywords, or both. If the DISTOF1 or
DISTOF2 keywords are missing from the description of an
independent source, then that source is assumed to have no
input at the corresponding frequency. The default values of the
magnitude and phase are 1.0 and 0.0 degrees, respectively. At
least one source in the circuit must have the DISTOF# stimulus
in order to give the analysis meaning. For example: V1 1 0
DISTOF1 1 DISTOF2 0.01.

Examples: .DISTO DEC 10 1kHz 100MHz
.DISTO OCT 10 1kHz 100MHz 0.9
.DISTO LIN 1 1MEG 100MHz 0.9

Summary: The distortion analysis computes the steady-state
harmonic or the inter-modulation products for small input signal
magnitudes.

Syntax: The .DISTO statement is used to define the frequency
band to simulate, the method for recording data, and the choice
between a harmonic or spectral analysis. Np, fstart and fstop
are .AC type parameters that specify the frequency range over
which the distortion data will be calculated, and the number of
data points.

If The F2OVERF1 Value Is Not Present In .DISTO
If the optional parameter f2overf1 is not specified, .DISTO
performs a harmonic analysis i.e., it analyzes the distortion in
the circuit using only a single input frequency, F1. The frequency
is swept as specified by values in the .DISTO statement exactly
as in the .AC statement. More than one input source may have
the DISTOF1 magnitude/phase values, but in this case, any
DISTOF2 values are ignored. Note: A value of 1 (as a complex
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distortion output) signifies Cos(2*þ*(2*F1)*t) at a frequency of
2*F1 and Cos(2*þ*(3*F1)*t) at a frequency 3*F1. This uses
the convention that 1, at the input fundamental frequency, is
equivalent to Cos(2*þ*F1*t).

If F2OVERF1 Is Present
If the optional parameter f2overf1 is specified, .DISTO performs
a spectral analysis. The value of f2overf1 must be a real
number between (and not equal to) 0.0 and 1.0. The circuit will
be simulated with sinusoidal inputs at two different frequencies,
F1 and F2. F1 is swept according to the .DISTO statement
options exactly as in the .AC statement. F2 is kept fixed, at a
single frequency, as F1 is swept. The value of F2 is equal to
(f2overf1 * fstart). Each independent source in the circuit may
potentially have two (superimposed) sinusoidal values for
distortion, at the frequencies F1 and F2. The magnitude and
phase of the F1 component are specified by the arguments of
the DISTOF1 keyword in the independent source statement.
The magnitude and phase of the F2 component are specified
by the DISTOF2 keyword and associated arguments.

Setting A Value For F2OVERF1
It should be noted that the number f2overf1 should ideally be an
irrational number. Since this is not possible in practice, efforts
should be made to keep the denominator in its fractional
representation as large as possible, certainly above 3, for
accurate results (i.e., if f2overf1 is represented as a fraction, A/
B, where A and B are integers with no common factors, B
should be as large as possible). Note that A < B because
f2overf1 is constrained to be < 1. To illustrate why, consider the
cases where f2overf1 is 49/100 and 1/2. In a spectral analysis,
the outputs are at F1 + F2, F1 - F2 and 2 * F1 - F2. In the latter
case, F1 - F2 = F2, so the result at the F1 - F2 component is
erroneous because of the strong fundamental F2 component at
the same frequency. Also, F1 + F2 = 2 * F1 - F2 in the latter case,
and each result is erroneous individually. This problem is not
present in the case where f2overf1 = 49/100, because F1 - F2
= 51/100 F1 <> 49/100 F1 = F2. In this case, there will be two
very closely spaced frequency components at F2 and F1 - F2.
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Getting Output: To generate output, the DISTO statement
must be accompanied by a .PRINT DISTO statement. If f2overf1
is not present, the .PRINT DISTO statement will record
information about the values of the voltages, currents, and
device/model parameters at the 2nd and 3rd harmonic
frequencies (2 * F1 and 3 * F1), vs. the input frequency F1. If
f2overf1 is present, the .PRINT DISTO statement produces
data for the voltages, currents, and device parameters at the
inter-modulation product frequencies F1 + F2, F1 - F2, and (2
* F1) - F2 vs. the swept frequency, F1.

Normally, in the harmonic analysis case, one is interested
primarily in the magnitude of the harmonic components, so the
magnitude of the AC distortion values are generated by the
distortion analysis. It should be noted that these are the AC
values of the actual harmonic components, and are not equal
to HD2 and HD3 (2nd/3rd harmonic distortion). To obtain HD2
and HD3, you must divide by the corresponding AC magnitude
values at F1, obtained from the .AC analysis.

Magnitude, magnitude (in dB), phase, real, and imaginary data
formats are all available for both the spectral and harmonic
analyses in a manner similar to the AC analysis. For example,

.PRINT DISTO V(5) VDB(5) VP(5) VR(5) VI(5)

will record all of the types of distortion data for node 5 vs.
frequency. See the AC and .PRINT sections for additional
examples.

Plots Pop-up: As stated above, two kinds of analyses are
available when a .DISTO analysis is requested; harmonic
distortion and inter-modulation distortion. Therefore, the Plots
pop-up in the Simulation Control window will show two or three
plot entries, depending on which analysis is run. Inter-modulation
distortion produces three plots (f1+f2, f1-f2, and 2f1-f2), harmonic
distortion produces two plots (2nd & 3rd harmonics).
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Sensitivity Analysis

Format: .control
sens output
sens output ac [dec] [oct] [lin] NP Fstart Fstop
print all
.endc

*#sens output
*#sens output ac [dec] [oct] [lin] NP Fstart Fstop
*#print all

Example: .control
sens v(4)
sens v(8) ac dec 1 100k 100meg
print all
.endc

Summary: There are two ways to perform sensitivity analysis;
with the traditional SPICE method and with Simulation
Templates. Simulation Templates are the preferred method
and offer significant advantages in output format, analysis
support and overall analysis flexibility. For more details on
Simulation Templates, including how they work and instructions
on how to create your own scripts, please see the on-line  help
in SpiceNet.  The traditional SPICE sensitivity analysis is
explained here.

The sens command runs a dc or ac sensitivity analysis. Output
can only be a node voltage or the current through a voltage
source. The first form will produce the DC sensitivity of various
component and model parameters to output. The second form
will produce the AC sensitivity of various component and model
parameters to output. Output information is produced via the
print command. Model and device parameters with zero value
are not evaluated during the sensitivity analysis.

Syntax: The sensitivity analysis can be performed for both the
DC operating point and for the AC analysis. The sens control
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statement can only be used in its ICL form. There is no “dot”
form.  Therefore you can run the traditional SPICE sensitivity
analysis in one of three ways; from IsSpice4 in the Simulation
Control script window, the ICL control block, or as a stand-alone
ICL statement. Both of the ICL formats are shown at the start
of this section.

Getting Output: The sensitivity analysis must be performed
using ICL commands. Therefore, an ICL print statement must
also be used. To print the sensitivity with respect to a component
value, simply state the reference designation. For an input
device parameter, the syntax is ref-des.param_name. For an
input model parameter, the syntax is ref-des.m.param_name.

For example:

sens v(4) ; Run DC Sensitivity
print all ; Data for all device/model parameters
sens v(4) dec 10 1K 100K ; Run AC Sensitivity
print r1 q1.area q1.m.bf ; Data for r1 and q1 area/beta

The output for the ICL print all function results in three columns
of data in the IsSpice4 output file. The columns are: Element
name (including the model parameter), Element Value, and
Element sensitivity. The list is sorted by the Element name.

Other sorting and output formats are available when using
Simulation Templates.

ICL script
commands can
be entered
directly into the
Simulation
Setup dialog in
the schematic.
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The PZ option
is normally
selected to
generate both
poles and
zeros.

.PZ - Pole-Zero Analysis

Format: .PZ N1 N2 N3 N4 cur [pol] [zer] [pz]
.PZ N1 N2 N3 N4 vol [pol] [zer] [pz]

Examples: .PZ 4 0 5 0 VOL PZ
.PZ 1 0 3 0 CUR POL
.PZ 2 3 5 4 VOL ZER

Summary: The pole-zero analysis computes the poles and/or
zeros of the small-signal AC transfer function from any input to
any output.

Syntax: Cur stands for a transfer function of the type (output
voltage)/(input current) while vol stands for a transfer function
of the type (output voltage)/(input voltage). These two types of
transfer functions cover all of the cases and allow the poles/
zeros of functions like input/output impedance and voltage gain
to be found. Pol stands for pole analysis only, zer for zero
analysis only, and pz for both. This feature is provided because
if there is a non-convergence in finding poles or zeros, then at
least the other can be found. The input and output ports are
specified as two pairs of nodes where N1 and N2 are the two
input nodes and N3 and N4 are the two output nodes.

Getting Output: .PZ generates results in the output file without
the need for a .PRINT statement. For the first example, IsSpice4
will compute poles and zeros of the transfer function between
node 4 and node 5.
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Data is taken in
tstep
increments from
time 0, or tstart,
to the time
tstop.

.Tran - Transient Analysis

Format: .TRAN tstep tstop [tstart [tmax] ] [UIC]

Examples: .TRAN 50NS 1US
.TRAN 10N 10U 9U 1N UIC

Summary: The transient analysis computes the circuit response
as a function of time over a user-specified time interval. The
initial conditions are normally determined by a DC analysis
called the initial transient solution. The UIC option may be used
to allow the simulation to begin from a user-specified state.

Syntax: The transient time interval and the data printout step
are specified on the .TRAN control line. Output data for tabular
(.PRINT) and line-printer (.PLOT) output is recorded in tstep
time increments. Tstop is the total analysis time. Tstart is an
optional alternate starting time. If tstart is omitted, data will be
recorded starting at time zero. If tstart is specified, the circuit is
analyzed normally in the interval of [zero to tstart], but no
outputs are stored. In the interval [tstart to tstop], the circuit is
analyzed and outputs are stored in tstep increments. Note, the
transient analysis always begins at time zero regardless of the
tstart value. There is no way to skip from time 0 to a specific time
and then begin the analysis.

Tmax is the maximum step size IsSpice4 uses to calculate the
circuit response. The IsSpice4 default is (tstop - tstart)/50.0.
Tmax guarantees a computing interval (time between internally
calculated points) that is smaller than the default. UIC (use
initial conditions) is an optional keyword that tells IsSpice4 not
to solve for the quiescent operating point before beginning the
transient analysis. If this keyword is specified, IsSpice4 uses
the values specified using “IC =...” on the various elements as
the initial transient condition and proceeds with the analysis. If
an .IC line has been given, then the node voltages on the .IC line
are also used to compute the initial conditions for the devices.
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Integration Algorithm Note: The transient analysis uses
Trapezoidal integration as the default method for calculation.
Gear integration may be selected via the .OPTIONS
Method=Gear parameter.

Getting Output: To generate output, the .TRAN statement
must be accompanied by a .PRINT or .VIEW statement. Outputs
may be voltages, currents, or device/model parameters. For
example,

.PRINT TRAN V(5) @R2[i] @q1[vbe] @M5[id]

would record all the time domain data for node 5, the current
through R2, the Vbe voltage of Q1, and the drain current in M5.

.IC - Transient Initial Conditions

Format: .IC V(N1)=val1 ... V(Nj)=valj

Examples: .IC V(3)=6.8V V(4)=1.25V V(5)=-3.12V

Summary: The .IC statement is used for setting initial conditions
for the transient analysis. Note: .IC should not be confused with
.NODESET, which is only used to help DC convergence.

Syntax: .IC works two ways, depending on whether or not UIC
is present in the .TRAN control statement.

If the UIC statement is present: The transient initial conditions
are computed using the specified node voltages. The transient
analysis will begin with the specified values. Any IC=value
specifications, located on the device call statements, will take
precedence over the .IC values.

If the UIC statement is not present: The program solves for
the initial transient operating point, using these values as a
forced initial condition. The constraints are lifted when the
transient analysis is started.
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.Four - Fourier Analysis

Format: .FOUR freq var1 [ var2 ... varn]

Examples: .FOUR 100KHZ  V(4,5)  I(VM1)

Summary: The Fourier analysis computes the magnitude,
phase, and normalized magnitude and phase, of the DC and
first 9 harmonics for each specified output variable. The
computational interval is from (tstop - period) to tstop. Numerical
accuracy limits the value of this analysis to rather high values
of distortion, usually greater than .1%, which is the default
computational accuracy.

Syntax: The value of tstop is defined in the .TRAN control
statement. Period is computed as 1 / freq. The output variables,
var1 ... varn, are the nodes on which the analysis is performed.

Getting Output: The output of the Fourier analysis is stored in
the output file. In order to make sure that any transient residues
are removed for the signal, several periods of freq should be
processed .

Alternate Fourier Analysis: Another more flexible version of
the Fourier analysis is available through the use of the ICL
Fourier command. Please see Chapter 11 for more information.
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.Print - Output Statement

Format: .PRINT type var1 [var2 ... varn]

The following examples show the different types of data that
can be saved in the output file or viewed in real time.

Example: Node voltages, currents, and node names through
devices. These may be used with any analysis type parameter.

.PRINT TRAN V(2) V(Vout) @r3[i] @Q1[ICC] @M5[ID] @d2[id]

Example: Device and Model Parameters. These may be used
with any analysis type parameter.

.PRINT TRAN @Q1[VBE] @m1[gm] @d1[charge] @r1[p]

Example: For the AC and distortion analyses, the following
postfix letters can be added to the V or I variables.

Postfix letter Output Example
R real part IR(V2)
I imaginary part VI(10,3)
P phase VP(2)
DB 20*log(Magnitude) VDB(1)

.PRINT AC V(1) VP(1) VDB(1) VR(1) VI(1)

.PRINT DISTO I(V1) IP(V1) IDB(V1) IR(V1) II(V1)

Example: Noise Analysis. The noise print statement only
accepts two vectors, inoise and onoise.

.PRINT NOISE INOISE ONOISE

Example: Sensitivity Analysis. The sensitivity analysis must be
performed within the ICL control block or script window.
Therefore, an ICL print statement must also be used. The
syntax for the sensitivity print statement is slightly different than

The designation
V(#) gives the
magnitude of
V(#).

.PRINT
V(node#,node#)
outputs the
nodal voltage
difference.

In IsSpice4,
extra voltage
sources DO
NOT have to be
added in order
to measure
branch
currents.

Node names
can be stated
as either name
or V(Name);
Vout or V(Vout).
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the normal print statement. As with all ICL print statements, a
type parameter is not needed because the print statement
applies only to the active analysis. To print the sensitivity with
respect to a component value, simply state the reference
designation. For an input device parameter, the syntax is ref-
des.param_name. For an input model parameter, the syntax is
ref-des.m.param_name. For example:

sens v(4) <- DC Sensitivity
print all <- Sensitivity data for all parameters
sens v(4) dec 10 1K 100K <- AC Sensitivity
print r1 q1.area q1.m.bf <- Sensitivity data for r1 and q1

Summary: The .PRINT statement selects which voltages,
currents, and device/model parameters will be saved in the
output file and viewed in real time. Data is saved using a tabular
format with columns, which are separated by spaces.

Syntax: The type parameter must be one of the following
analysis types: AC, DC, TRAN, NOISE or DISTO. Output
variables begin with a V if they describe a node number, or an
I if they describe a voltage source reference designation, or an
@ if they refer to a device/model parameters. Output variables
may also be node names.

ICL Control Block/Script Window Note: When the .PRINT
statement is used in the netlist, vectors for voltages, currents,
or device/model parameters are automatically saved and
displayed in real time. This contrasts the condition when an ICL
print statement, or any other statement that uses a voltage,
current, device/model parameter, is used within the control
block. In this case, the named vectors must be saved using the
save statement, and views must be created with the view
statement. For example, .PRINT TRAN V(5) would save and
display node 5 in real time. To perform this same function in the
ICL control block, use the following:

.control
save v(5)
view tran v(5)
tran 1n 100n
print v(5)
.endc

See Chapter 11
for more
information.



337

CHAPTER 10 - ANALYSIS SYNTAX

Node Name Note: In the .PRINT statement, node names are
specified without any parentheses (VOUT). This is in contrast
to other control statements where node names are specified
like any other node number (V(VOUT)). Postfix letters can not
be used with node names. Node names should not be confused
with Alias names, which are created via the ICL alias statement,
and used to reduce the complexity of expressions, or *Alias
statements that are used to associate a user defined name with
a node number in the IntuScope analysis program.

Printing Device and Model Parameters
A wide variety of device and model parameters can be stored
in the output file and displayed in real time. The available
parameters are listed in Appendix B. Parameters come in two
types, device and model, and each parameter can be input
only, output only, or input and output. Obviously, printing input
or input/output parameters is of little value except for verification
purposes. Currents through all devices and the power dissipation
of all devices is available, including those in subcircuits. No
extra voltage sources are needed to measure current.

Printing Aliases
The syntax for printing computed device parameters, subcircuit
information, and print expressions can become complex. An
ICL alias command is available to reduce these complex
phrases to simple, easy-to-remember names. Note: all the
alias statements listed below MUST be placed inside the ICL
control block or the script window, while the .PRINT statements
are located outside of the control block in the input netlist.

Example: Simple Alias examples in a control block
control
alias voutput v(5) <- Alias of a node name
alias vsubnode v(1:X5) <- Alias of a subcircuit node
alias r1power @r1[p] <- Alias of a computed parameter
.endc
.PRINT VOUTPUT VSUBNODE R1POWER

Important Note: Alias names should be limited to less than 15
characters, which is the limit of the name display in IntuScope.

Useful
parameters
include device
power,
transistor VBE,
and FET gm.

Be careful not
to use alias
names that are
ICL or IsSpice4
functions or
keywords such
as Phase,
Pulse, Time,
Temp, etc.
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Printing Expressions
IsSpice4 allows various combinations of voltages, currents and
device/model parameters to be combined in mathematical
expressions. The expressions can contain the above quantities
and may use any of the available math functions described in
Chapter 11. These expressions are supported by the ICL alias,
let and view commands. However, in order to save the
expression, data in the output file, a .PRINT statement is
necessary.

Example: Print Expressions
alias vtest (v(4)-v(3)) * V(5) <- Alias of a node equation
alias stuff v(4) * @r4[i] - @q3[p] <- Alias w/device parameters
alias magdif mag(v(4) - v(3)) <- Alias of AC expressions
alias phdif ph(v(4)) - ph(v(3)) <- Alias of AC expressions
.PRINT TRAN VTEST STUFF
.PRINT AC MAGDIF PHDIF

AC Print Note: The data from device/model parameters contains
both real and imaginary parts. When used in expressions, the
appropriate forms of the vectors should be used throughout.
For example, “mag(v(4)) * mag(@r4[i])” will produce a magnitude
response, whereas “v(4) * @r4[i]”, will produce answers with
real and imaginary parts.

Printing Subcircuit Data
IsSpice4 allows access to all of the data inside a subcircuit.

Example: Subcircuit Information
.PRINT TRAN V(5:X2) V(1:XSUB) <- Subcircuit voltages
.PRINT TRAN @L1:X2[I] @Q1:X5[ICC]<- Subcircuit currents

Real Time Display
Most items in the .PRINT statement  are also displayed in real
time as the simulation runs. The following items can not be
displayed as the simulation runs: phase, real, or imaginary data
from the AC and distortion analyses, sensitivity analysis data,
and Print Expressions from any analysis. Print expression data
will, however, be immediately displayed after the analysis has
been run.

.PLOT - OUTPUT STATEMENT

See the
.SUBCKT
statement and
Chapter 5 for
more
information on
subcircuit
notation.

Print expression
data is
displayed after
the analysis is
run.

Alias
statements go
in the ICL
control block
between the
.control and
.endc lines or in
the Simulation
Control dialog's
script window.
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The .VIEW
statement does
not save data in
the output file.

.Plot - Output Statement

Format: .PLOT type var1 [pl1, pu1]
+ [var2 [pl2, pu2]] ... [varn [pln, pun]]

Examples: .PLOT TRAN V(1) 0 1

Summary: The .PLOT statement is used to generate line-
printer plots in the output file, using ASCII characters.

Syntax: The .PLOT syntax is the same as the .PRINT syntax
for the various analysis types and output variables. The pl and
pu parameters are optional lower and upper plot limits. Automatic
scaling is used if pl and pu are not specified.

Plots that are generated in this manner will not produce tabular
data and, therefore, cannot be used by graphics post-processors
such as IntuScope.

.View - Real Time Waveform Display

Format: .VIEW type var1 minvalue maxvalue

Examples: .VIEW TRAN V(5) 0 10
.VIEW TRAN @R1[I] 0 2
.VIEW AC V(5) -50 20
.VIEW DC I(V5) -.1 .1

Summary: When IsSpice4 runs, waveforms from the .PRINT,
.VIEW, and ICL view statements will be displayed as the
simulation runs. The progression of the analyses and hence,
the waveform display, is: AC, DC, Transient, Distortion, then
Noise. All waveforms for which there is a .PRINT, .VIEW, or ICL
view statement will be displayed with the limitation that the total
number of waveforms will be determined by your screen
resolution . All of the distortion analysis products are displayed
on one graph.
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Syntax: The .VIEW function is used to set the on-screen
scaling for a waveform to something other than the default
values determined by the .OPTIONS statement. The type
parameter  can be AC, DC, TRAN, NOISE, or DISTO. The var1
parameter can be a voltage, current, or device/model parameter.
The minvalue and maxvalue determine the graph scaling.

The default scaling for the Transient and DC analyses is ±2V
(Node voltages) or ±25mA (Voltage source currents) about the
first data point. For AC, Noise and Distortion analyses, the
default scaling is ±60dB about the first data point. All AC, Noise
and Distortion waveforms are automatically scaled in dB units.

The default scaling values are used for all waveforms that are
specified in the .PRINT AC, DC, Disto, Noise or TRAN
statements, unless a specific .VIEW statement is present. The
default .OPTIONS parameters for the real time waveform
display are as follows:

.OPTIONS Parameter Default Use
ISCALE ±.025Amps Current waveforms
VSCALE ±2Volts Voltage waveforms
LOGSCALE 60 (in dB) AC waveforms

For example: .OPTIONS VSCALE=5V will set the scaling for
all DC and Transient waveforms to ±5V about the first data
point.

The .VIEW statement does not support voltage differences, i.e.
.PRINT TRAN V(2,3). One node voltage or voltage source
current is allowed per VIEW line. The .VIEW AC statement only
supports V(#) designations and plots the data automatically in
dB. VM(#), VDB(#), phase VP(#) postfix notation are not
supported.

Bad View Syntax Note: The appearance of a blank space on
the screen, where a waveform should be, indicates that one of
the .PRINT, .VIEW, or ICL view statements has an incorrect
node number, node name, or device/model parameter
specification.

The ICL alias
command may
be used to
display the
voltage
difference. See
the Printing
Expressions
section under
.PRINT.
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.Options - Program Defaults

Format: .OPTIONS [option name] [option name=val]
Examples: .OPTIONS ACCT RELTOL=.01
Summary: The .OPTIONS statement is used to set or change
various program options.

Syntax: There are two kinds of options: options with a value
and options without a value, also known as flags. Flag options
can simply be listed on the .OPTIONS line. The options may be
listed in any order. In addition, several .OPTIONS statements
can be specified in the netlist. The following options are
recognized by IsSpice4.

Simulation Parameters
ABSTOL=x Default=1E-12A Example: Abstol=1E-10
Resets the absolute current error tolerance of the program. It is
recommended that this value is not altered. However, if currents
over 1A are encountered, setting ABSTOL to eight orders of
magnitude below the average current can alleviate convergence
problems.

ALTINIT=x Default=0 Example: Altinit=1
Causes the initial method used for starting the transient analysis,
when the UIC keyword is set, to be bypassed in favor of an
alternate algorithm. The alternate algorithm is normally invoked
automatically if the initial algorithm fails. You can also set this
parameter to a value between 10 and 30. The value corresponds
to the exponent of the initial time step used to get the transient
analysis started (i.e. Altinit=10 -> 1E-10seconds).

AUTOTOL Default=0 Example:AUTOTOL=2
If AUTOTOL is set larger than 1, then when a node or branch
current fails to converge, its tolerance value is multiplied by
AUTOTOL. Setting AUTOTOL=2 will rapidly eliminate offending
nodes. Smaller values will make the elimination occur more
slowly and have a less sever affect. If AUTOTOL is set to less than
-1, the same thing occurs using the absolute value of AUTOTOL.
The ".OUT" file reports the activity so that you can isolate problem
nodes and sources. AUTOTOL is only active for the initial DC
operating point calculation.
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CHGTOL=x Default=1E-14C
Resets the charge tolerance (in coulombs).

DCCONV
Use this option for circuits that have difficulty with DC
convergence.DCCONV sets the  following values: ramptime =
10e-9; rshunt  =  100 meg.

GMIN=x Default=1E-12W-1

Resets the value of GMIN, the minimum conductance used in any
circuit branch.

ICSTEP=x DEFAULT=40 Example:ICSTEP=10
GEQFREQ=x DEFAULT=1e12 Example:GEQFREQ=1p
DC Convergence in SPICE simulators cannot be achieved for
analog feedback circuits where high gain amplifiers are cascaded
and with active regions that are offset. These circuits work
perfectly in practice, however, today’s standard SPICE
convergence algorithms tend to oscillate and find a solution only
by lucky chance. This is due to the chaotic nature of the numerical
oscillation process. In practice, such circuits do not oscillate in the
time domain because capacitors are used to dampen the oscillation
in accordance with control system theory.

The ICSTEP convergence algorithm was implemented to solve
this type of problem. In this algorithm, each capacitor that has an
Initial Condition (IC)=xxx will have a conductor in parallel with a
current source placed across it. The current, ceq is the product of
the IC voltage and the conductance, geq. The conductance starts
off very high and is stepped down toward zero for each successful
iteration. At the final iteration, ceq and geq are set to zero. It’s
probably easier to visualize it using a Thevenin Equivalent
consisting of a resistor in series with a voltage source. But the
Norton version slips directly into the SPICE admittance matrix as
shown below.

geqceq

K

L

geq

-geq

K col

-geq

geq

L col

K row     ceq

L row     ceq

 

Use ICSTEP to
correctly
initialize digital
behavioral
circuits for
DCOP and AC
analysis.

ICSTEP allows
you to retain
bistable models
in your AC
analysis and
use capacitor
ICs to initialize
the circuit state.
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ITL3 and ITL5
are no longer
used in
IsSpice4.

The following  IsSpice4 options control this algorithm:
.OPTION ICSTEP = [num]
.OPTION GEQFREQ = [omega]

where num is a value between 1 and 100 that sets the number of
steps and omega is an effective radian frequency, it defaults to
1e12 if you don’t set it.

The initial geq is set to the product of GEOFREQ * CapValue
and ceq = geq*InitCapVoltage.

ITL1=x Default=100 Example: Itl1=300
Resets the limit to the number of DC Newton-Raphson iterations
that IsSpice4 will perform before declaring “No convergence in
DC analysis”. If this limit is reached without convergence, IsSpice4
will automatically invoke the built-in Gmin stepping and Source
Stepping algorithms to achieve convergence. Setting ITL1 to 300
can help to achieve DC convergence if a failure occurs.

ITL2=x Default=50 Example: Itl2=100
Resets the DC transfer curve iteration limit to the number of DC
Newton-Raphson iterations that IsSpice4 will perform at each
step of the sweep before declaring “No convergence in the DC
sweep analysis.” Setting ITL2 to 100 can help the .DC analysis to
converge if a failure occurs.

ITL4=x Default=10 Example: Itl4=100
Sets the number of steps for each transient time point. Setting
ITL4 to 100 can help solve “Time step too small” errors in the
transient analysis.

ITL6=x Default=10 Example: Itl6=100
Sets the number of steps for the source stepping DC convergence
algorithm. Source stepping is automatically invoked if the Gmin
stepping algorithm fails. Therefore, it should not be necessary to
change this value. This option is called “Gminsteps” in SPICE3
programs.

MAXORD=x Default=2 Example: Maxord=6
Sets the maximum order for integration if the Gear integration
method is selected. The value must be between 2 and 6.
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Minbreak
speeds up
Transmission
line simulations.

Try using
MINBREAK=-1
to reduce
memory use if
you are not
using
transmission
lines.

METHOD=Gear  Default=TRAP
Placing Method=Gear on the .OPTIONS line causes IsSpice4 to
use Gear integration. Trapezoidal integration is used if Gear is not
specified.

MINSTEP=x Default=none Example: MINSTEP=1n
The value of MINSTEP is used as the minimum time at which the
internal data is accumulated during a simulation. Since the
internal data is determined by the activity of the circuit and not the
.TRAN statement, the “snap” turn off of a diode during a power
simulation can cause data to be collected at frequencies that are
much higher than the frequency of interest. MINSTEP is used to
reduce the extraneous data collected internally and reduce the
amount of memory used by a simulation. When setting MINSTEP,
note that the higher frequency data will be folded into the new
sampling interval and appear as lower frequency oscillation.

MINBREAK=x Default=off Example: Minbreak=5N
Sets the minimum time between transient breakpoints. Minbreak
is used to speed up the simulation of circuits that contain ideal
transmission lines. Increasing the minbreak time will speed up
the simulation at the expense of accuracy. For adequate accuracy
and best speed, it is recommended that the minbreak value be set
to about 1/4 of the time of the smallest transmission line delay.
The method used to simulate circuits using ideal transmission
lines has been completely changed from the process used in
SPICE 2. The result is greatly increased speed and much smaller
memory usage. The minbreak value can be used to further
increase the speed of the analysis.

*If MINBREAK is set to -1, IsSpice4 will not save any time
information prior to the value set for TSTART on the .TRAN line.
For long delayed simulations, this will reduce the amount of
memory used by a simulation. If the simulation contains
transmission lines, this parameter should not be used.

MULTITHREAD=x   Default=1        Example: Multithread=2
The number of multithreaded circuits.

NOISETEMP Default=off Example: Noisetemp
If .NOISETEMP is set, then overall circuit temperature is used
in noise calculations.  Otherwise, each part’s individual
temperature is used in the NOISE calculation.
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NOOPITER Default Flag State=Off
Causes the simulation to go directly to gmin stepping and bypass
the standard operating point routine.

NUMDGT=x Default=6 Example: Numdgt=9
Controls the number of digits after the decimal place for data that
is stored in the output file.

PARAMDIGITS=x     Default=2    Example: PARAMDIGITS=12
Option that is only active in ICAPS parameter passing and will set
the number of significant digits that will be printed on the netlist for
a passed parameter/value.

PIVREL=x Default=1E-3
Resets the relative ratio between the largest column entry and an
acceptable pivot value.

PIVTOL=x Default=1E-13
Resets the absolute minimum value for a matrix entry that is
accepted as a pivot.

RELTOL=x Default=.001 Example: Reltol=.01
Resets the relative error tolerance of the simulation. The default
value is 0.001 (0.1 percent). This is the most important parameter
for control of the simulation accuracy. It is recommended that
RELTOL be set to no larger than .01. Use of the .01 value is
recommended in order to speed up the simulation. Results
should not be noticeably affected.

RSHUNT Default=Off Example: RSHUNT=1MEG *
When entered, this value is used as a shunt resistance to ground
from every analog node.

RAMPTIME=x Default=0    Example: Ramptime=10u *
The time that is used to ramp the supply voltage for a transient
analysis. This parameter can be useful for aiding convergence for
circuits that are initially unstable, by realistically modeling the
turn-on time of power supplies.

TRANCONV
Helps with transient convergence.  Use to avoid time step too
small errors.TRANCONV sets these values:  abstol = 50 µ; vntol
= 50 µ ; reltol  =  0.01; and method = gear
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TNOM = x Default=27°C Example: Tnom=0
Resets the temperature at which model parameters were
calculated. Any TNOM values that are stated in .MODEL
statements will override this value.

TEMP = x Default=27°C Example: Temp=75
Sets the temperature at which the entire circuit will be simulated.
Any temperature values that are specifically stated on an element
will override this value.

TRTOL = x Default=7
Resets the transient error tolerance. The default value is 7.0. This
parameter is an estimate of the factor by which IsSpice4
overestimates the actual truncation error. It is recommended that
this value is not changed.

TRYTOCOMPACT  Default Flag State=Off
Applicable only to the LTRA model. When specified, the simulator
tries to condense a lossy transmission lines’ past history of input
voltages and currents.

VNTOL=x Default=1E-6 Example: Vntol=1E-4
Resets the absolute voltage error tolerance of the program. The
default value is 1 µvolt. It is recommended that this value is not
altered. However, if voltages over 100V are encountered, setting
VNTOL to eight orders of magnitude below the average voltage
can alleviate convergence problems.

VSECTOL=x Default=0         Example:  Vsectol=1E-9
Reduces the time step when the volt-second product described
by its argument is exceeded by the current time step, times the
predicted voltage minus the iterated voltage. The test is made for
all nodes. Use this option when the automatic time step isn’t
scaling back the time step when behavioral switching events occur.

Mixed-Mode Options
NOOPALTER=x Default Flag State=On
Causes analog/event alternations during a DC operating point to
be disabled.

AUTOPARTIAL=x Default Flag State=Off
Causes the partial derivatives for each code model to be computed
by IsSpice4. Typically, you will provide the partial derivative
computation in the code model and leave this option off in order
to increase the speed of computations.
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MAXOPALTER=x Default=300   Example: Maxopalter=500
Maximum number of analog/event alternations for a DC operating
point before nonconvergence is reported. The default value of
this option is determined by the circuit and depends on the
number and type of code models present.

MAXEVTITER=x Default=300   Example: Maxevtiter=500
Maximum number of event iterations for each analysis point
before nonconvergence is reported. The default value of this
option is determined by the circuit and depends on the number
and type of code models present.

CONVLIMIT=x Default Flag State=Off
Enables convergence assistance for code models.

CONVSTEP=x Default=0.25 Example: Convstep=.1
The fractional steps allowed by code model inputs between
iterations.

CONVABSSTEP=x Default=0.1  Example: Conabsvstep=.05
The absolute steps allowed by code model inputs between
iterations.

Model Options
BADMOS3 Default Flag State=Off
Causes the old SPICE 3E version of the MOS3 model, with the
“kappa” discontinuity, to be used.

BYPASS Default Flag State=On
The implementation of the inactive device bypass algorithm
found in SPICE 2 programs has been greatly improved in
IsSpice4. Inactive device bypass is a technique that is used to
speed up a simulation by reusing the terminal conditions of
devices that have not changed significantly during the past
evaluation period. Turning the device bypass off will slow down
the simulation, and is therefore not recommended.

CML=x Default=none
Sets the path to the named code model DLL file.
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DEFAD=x Default=0
Resets the value for MOS drain diffusion area. The parameter in
the MOSFET M element statement is AD. This statement will
cause the value of AD to have a default value other than 0.

DEFAS=x Default=0
Resets the value for MOS source diffusion area. The parameter
in the MOSFET M element statement is AS. This statement will
cause the value of AS to have a default value other than 0.

DEFL=x Default=100µm
Resets the value for MOS channel length. The parameter in the
MOSFET M element statement is L. This statement will cause the
value of L to have a default value other than 100µm.

DEFW=x Default=100µm
Resets the value for MOS channel width. The parameter in the
MOSFET M element statement is W. This statement will cause
the value of W to have a default value other than 100µm.

OLDLIMIT Default Flag State=Off
Use SPICE 2 MOSFET limiting

Screen/File Output Options
ACCT Default Flag State=Off
The ACCT flag is used to produce a summary listing of accounting
and simulation related information. The data is stored at the end
of the output file. Information highlights include: operating
temperature, number of iterations for various operations, and
simulation time for various analyses.

INTERPORDER=x  Default=1 Example: Interporder=2
Sets the interpolation order, which is used for the calculation of
data from the raw internal IsSpice4 data.

ISCALE=x Default=.025Amps Example: Iscale=1
Sets the default scaling for current waveforms displayed in the
IsSpice4 real-time view graphs.
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LIST Default Flag State=Off
The LIST option causes the actual netlist, simulated by IsSpice4,
to be placed in the output file. This netlist may be different than the
user-generated netlist. The subcircuits will be  flattened and any
SPICE 2 polynomial syntax for the E, F, G, or H elements will be
translated into B elements.

LOGSCALE=x Default=60 (in dB) Example: Logscale=20
Sets the default log scaling for AC waveforms, which are displayed
in the IsSpice4 real time view graphs.

VSCALE=x Default=2Volts Example: Vscale=15
Sets the default scaling for voltage waveforms that are displayed
in the IsSpice4 real time view graphs.

Boolean Options
LONE = x Default=3.5 Example: Lone=5
Sets the value for the logic 1 state, which is used in the analog
behavioral element (B) with boolean expressions. When a boolean
expression is evaluated as true (logic 1), the output of the B
element will be this value.

LZERO = x Default=.3 Example: Lzero=0
Sets the value for the logic 0 state, which is used in the analog
behavioral element (B) with boolean expressions. When a boolean
expression is evaluated as false (logic 0), the output of the B
element will be this value.

LTHRESH = x Default=1.5 Example: LTHRESH=2.5
Sets the value for the logic threshold, which is used in the analog
behavioral element (B) with boolean expressions. Below this
voltage level, a voltage will be evaluated as a zero. Above this
level, a voltage will be evaluated as a one.

Changes From SPICE 2
The following parameters are not recognized by IsSpice4: ITL5
(The transient analysis total iteration limit is unlimited in IsSpice4),
LIMPTS (There is no programmed default ceiling to the number
of data points that IsSpice4 will save), LVLTIM (The transient
algorithm, which uses iteration control, is not implemented in
IsSpice4), NOMOD, and NOPAGE.
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individual
device syntax
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temperature-
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parameters.
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Analyses At Different Temperatures

Format: .OPTIONS TEMP=tempval

Example: .OPTIONS TEMP=50  TNOM=0
.MODEL QMOD NPN (TNOM=10)
Q1 1 2 3 QN2222 TEMP=75

Summary: Temperature effects are built into the behavior of all
active elements. Resistors can be made temperature dependent
if temperature coefficients are inserted into a resistor .MODEL
statement. To simulate a change in temperature for the entire
circuit, a new temperature can be placed on the .OPTIONS line
via the TEMP parameter. To simulate a change in temperature
for an active element or a resistor, simply state the temperature
on the device call line. Note, you may need to adjust certain
temperature related parameters in some device models. See
the device’s model parameters for more information.

Syntax: All input data for IsSpice4’s model parameters is
assumed to have been measured at a temperature of 27°C
unless it is globally changed for all models via the .OPTIONS
TNOM parameter, or locally changed for a single model via the
.MODEL TNOM parameter. The circuit simulation is performed
at a temperature of 27°C unless it is globally changed via the
.OPTIONS TEMP= parameter, or locally changed on a single
element via the TEMP= specification.

Simulating At Multiple Temperatures
The simplest method for performing temperature sweeps is by
using the Alter tool and associated dialog in the schematic.
Please see the on-line help or the Getting Started manual for
more information on the Alter function.

Modifying the circuit temperature via the .OPTIONS TEMP
value is different than the method used in SPICE 2 based
simulators. Use of the single .OPTIONS TEMP value replaces
the SPICE 2 syntax, which used a separate .TEMP statement.
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See the Analysis control section in Chapter 11 for an explanation
of running analyses at different temperatures using ICL scripts.

Getting Output: After the temperature is set, either on an
element or for the whole circuit, the analysis results will be
produced in the same manner as usual except that the specified
temperature effects will be included.

Title and End Statements

Format: .END
Examples: ANALOG BICMOS ASIC

Test Circuit For Power Supply

The title line must be the first line in the input file. In IsSpice4,
there can only be one title line and one complete circuit
description in a file. The .END statement is the last in the circuit
definition.

Continuation and Comment Lines

Examples: .MODEL QN2222 NPN
+ (BF=150 IS=1E-12)
*Subcircuit connections are ....
R1 1 0 10K  ; Snubbing resistor

Continuation lines begin with a + sign in the first column. The
contents of the line are appended to the line directly preceding
the continuation line. Comments are used to document various
aspects of the circuit netlist. They may be included anywhere
in the netlist.
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Interactive Command Language

ICL Defined

ICAP/4’s Interactive Command Language (ICL) is a SPICE 3
language extension that enhances the abilities of traditional Berkeley
SPICE. It provides a set of commands and functions for advanced
interactive and batch-style control of the simulator, and special
waveform processing in the IntuScope waveform viewing tool.

The ICL enables simulation breakpoints, parameter value changes,
print aliases and expressions, computed model parameters, and
control loops to be used in simulation. Simulation scripts, or test
procedures, combining any number of these commands can also
be created. For instance, the ICL stop statement can be used in
monitoring if the power in a device has exceeded a value. If so, the
simulation is stopped and a corresponding message posted.

ICL commands can be inserted directly into the IsSpice4
Simulation Control dialog’s Script window, Expression window,
or Command window, and into the netlist inside a control block.
The control block is placed at the top of a standard IsSpice4
netlist after the title, and before any “dot” analysis statements.
The control block is a section of the netlist reserved for ICL
commands. It begins with the line “.control,” and ends with the
line “.endc.” Single-line ICL commands can also be inserted in
the netlist by placing the *# characters at the beginning of the line.
The .control and .endc lines are not needed when ICL commands
are used directly in IsSpice4.

All output generated by ICL statements (print, show, etc.) in the
Script, Expression, and Command windows is directed to the
IsSpice4 Output window. All ICL statements in the input netlist
generate output in the output file.

Contrary to the traditional SPICE syntax, execution of ICL
statements is ORDER DEPENDENT.

Important Note:  This chapter is an introduction to ICL Scripting. Complete
help on Simulation Templates, plus all ICL functions and commands, is
available from the on-line help system in SpiceNet and IsSpice4.
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Simulation Breakpoints and Control Loops
The ICL provides a new dimension in analysis with the
introduction of Simulation Breakpoints. Breakpoints are
commands that can be set for any type of simulation to monitor
circuit behavior. The simulation will halt when the breakpoint
condition is satisfied. Breakpoints are set with the STOP
command. The STOP command accepts a vector expression as
an argument and continuously evaluates the expression during
the simulation. When the argument evaluates true, the simulation
halts. A simple example is;

stop when v(7) > 4.5

In this case, the simulation will stop when the voltage at node
7 exceeds 4.5 volts.

In addition to the STOP command, control loops are available
that allow multiple simulations to be performed. With the control
loops, circuit behavior can be monitored, circuit parameters
varied, and simulations rerun, all during a single simulation
session.

Simulation Output
Output for expressions containing any node voltage, current, or
device/model parameter can be displayed and recorded. For
example, a node difference can be obtained by simply stating

alias  vdiff  v(1)-v(2)

The alias name can then be used in the standard .PRINT
command to obtain the desired output in the output file.

View and let commands are available to allow parameters or
expressions to be viewed in real time, but not printed or saved
to the output file. This allows a parameter to be investigated
without increasing the memory needed to create the output file.

Model Parameter Output
The show and showmod commands produce operating point
information for devices and models.

Output
commands
executed from
the IsSpice4
Script window
direct output to
the IsSpice4
Output Window.
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The Interactive Command Language

ICL commands can be placed in the Script, Expression, or
Command windows, or between the .control and .endc
statements. A simplified control block in the input netlist is;

.control

... commands

.endc

Important Note: .control and .endc statements are only
required for an ICL control block in the input netlist. They
are NOT required for the Script, Expression, or Command
windows. The control block should be positioned at the
beginning of the IsSpice4 input file description.

Individual ICL statements can also be put into the input netlist
by placing a *# in front of them. For example.

*#OP
*#sens V(4)
*#print all

Order Dependency
ICL commands are position sensitive because they are executed
in the order as they are encountered. In general, commands should
be issued in the following order;

Save vectors
Alias statements
View statements
Stop, Breakpoints or Control Loops
Analysis control statements
Let statements
Alter statements
Output statements

A more detailed treatment of the control block is provided in the
“Using the Control Block” section later in this chapter.

Each netlist
may only
contain one
control block.
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Vectors
Data is saved in the form of vectors. Vectors are generated with
the save, alias, let or .PRINT commands. This will create a
vector for use as an argument in future ICL commands, and/or
to print output data in an IntuScope compatible format.

The save, alias, and let commands are used to create vectors
for simulation control command arguments. They are also used
to save vectors for schematic cross-probing and display in
IntuScope.

Vectors may be assigned to a previously defined vector, floating-
point number (scalar), or list such as [P1 P2 ... Pn], which is a
vector of length n. A number may be written in any format
acceptable to IsSpice4, such as 14.6MEG or
-1.231E-4.

A vector name beginning with the ‘@’ symbol is a reference to
an internal device or model parameter. If the vector name is of
the form @name[param], name must be a device reference
designation, and param must be a valid parameter for the
specified reference designation. Appendix B lists all available
device and model parameters. You can also use this notation:

param (name).  For example i(ri) is the same as @ri[i].

Vectors are referenced by their names. To reference items
within a vector, the following syntax is used:

vec[n] or vec[m, n]

The first notation refers to the nth element of vec. The second
notation refers to all of the elements of vec that fall between the
mth and the nth element, inclusive. If n is less than m, the order
of the elements in the result is reversed.

All data in the output file is accompanied by an index column
that represents the location of each data point in the output
vector. For the AC and DC analyses, and their associated sub-
analyses, all data is directly related to the analysis control
statement. Hence, to find a location, simply use the analysis

The linearize
command
converts data
onto a uniform
time scale.

TIME and
FREQ are
reserved vector
names and
represent the
default time and
frequency
vectors for the
last analysis.
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control parameters to calculate the position, or refer to the index
column from a previous simulation. For a transient analysis, all
vectors contain data according to a dynamic time scale. This
time scale will contain more data in the transition locations and
less data in other areas. When the vector is printed, all values
are linearized onto a uniform time scale based on the TSTEP
value. Note: a vector must be linearized (with the linearize
command) before data can be accessed via an index.

For expressions that return a vector, the notation expr [n m],
where n and m are numbers, denotes the range of elements
from expr between n and m. The notation expr [n] denotes the nth
element of expr. If m is less than n, the order of the elements in
the vector is reversed.

Functions
There are two types of functions; predefined or user-defined
macros. Function arguments may be scalar or vector quantities.

Macros are defined with the function command. For example;

function max(x,y) (x > y) * x + (x <= y) * y
function min(x,y) (x < y) * x + (x >= y) * y
function sdev(vec) sqrt(mean(vec*vec) - mean(vec)^2)

The macro “max(x,y)” accepts the scalar arguments x and y
and returns the larger value. The arguments x and y can be
scalar or vector quantities. For example,

larger = max(v(8),v(7))

In general, all operations and functions will work on either real
or complex values. However, operations such as the logarithm
of a negative number, will yield errors. All functions and operations
operate point-wise on their arguments unless otherwise described.
Hence, where appropriate, the argument (arg) can be either a
vector or a scalar.

The complete set of functions, including their description and
format, is available in the on-line help and on the Intusoft web
site. A brief description is available in the next section.

There should
be no spaces
before or after
the > or < signs.
Use of the
synonyms ge
and le is
recommended.

The functions
max(x,y) and
min(x,y)
produce
maximum and
minimum vector
envelopes if x
and y are
vectors.
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Function sin(3.1415) norm(v(8))
Examples: mag(v(3)+v(2)) exp(@r2[i])

sqrt(v(34)) deriv(V(3))

Expressions
Expressions are used to produce information to make a decision
or calculate vector output that is not otherwise readily available
from the simulation. An expression may consist of any combination
of vectors, scalars and functions. The equations and functions
can be constructed using any combination of the following
operators: +, -, *, /, ^, % and ,.

% The modulo operator. The result is the remainder when the
first number is divided by the second. Note that both
arguments are rounded down to the nearest integer before
the operation is performed.

, The comma operator has two meanings: if it is present in
the “argument list” of a function, it serves to separate the
arguments. When used in the term x, y, it is synonymous
with x + j(y). Such a construction may not be used in the
argument list to a macro function. For example;

3,5 = 3+j5
max(3,5) determines the larger of 3 or 5

Logical operations
symbol definition

& and
| or
! not

Relational operations
symbol synonym definition

< lt less than
> gt greater than
>= ge greater than or equal
<= le less than or equal
= eq equal
<> ne not equal

Functions can
be used in any
ICL statement.

Trigonometric
functions will
treat arg as
radians unless
the variable
“units” is set to
degrees. See
the SET
function for
more details.
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Logical and relational operators are available for constructing
expressions in breakpoints, control loops, and If-Then-Else
statements. When used in an algebraic expression, they work
as they do in the C programming language, and produce values
of 0 or 1.

and or & - 1 if both operands are nonzero, 0 otherwise.
not or ! - 1 if the operand is 0, 0 otherwise.
or or | - 1 if either of the two operands is 1, 0 otherwise.

Relational operators can be substituted for the synonyms listed
beside them. These synonyms are useful when the symbols
such as < and > become confused with IO redirection, such as
in the max function example.

Examples:

while mean(v(5)) > 45m & mean(v(4)) > 45m
if v(4) <= @r3[i]*@r3[resistance]

Note: The “=” operator should not be used with the stop
command. This comparison should only be made with values
that can truly be equal. Data points calculated during a transient
simulation are a discrete set of numbers that are unlikely to ever
be exactly equal to a predefined value.

Variables
Additional information used for simulation control is obtained
through the use of variables. There are many variables that
have a special meaning to ISSPICE4. A variable is manipulated
with the ICL “set” command. All predefined variables are listed
under the set command. In addition to the variables listed, all
.OPTIONS parameters are considered variables and can be
changed with the set command.

Examples:

set temp=125 set global circuit temperature to 125°C
set units=degrees set trig function units to degrees
print $temp $units print the variable values
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ICL Function Summary Listing

Mathematical Functions
Arg may be a scalar or a vector.

abs(arg) - The absolute value of arg.
db(arg) - Decibels (20.0 * log base 10 of arg).
ceil - Returns the ceiling of the vector.
ddt(arg) -  Time derivative of arg
deriv,
differentiate (arg) - Calculates the derivative of the  vector with

respect to the current plot scale. (The
derivative uses numerical differentiation by
interpolating a polynomial of “polydegree”
order. If polydegree, a set variable is not
set, the order defaults to 1.) May also be
written as differentiate(vec).

exp(arg) - e to the arg power.
floor - Returns the floor of the vector.
im, imag(arg) - Returns the imaginary part of a complex vector

in a real vector. May also be written as im(vec).
j(arg) - arg multiplied by sqrt(-1).
ln(arg) - The natural logarithm (base e) of arg.
log(arg) - The logarithm (base 10) of the arg.
mag, magnitude (arg)

- Returns the magnitude of a complex vector in
a real vector. May also be written as
magnitude(vec.

ph, phase (arg) - Returns the phase of a complex vector in a real
vector (expressed in degrees). May also be
written as phase(vec).

pulse - Returns a vector that is the length of the default
vector that is unit for the number of points in its
argument and zero thereafter.

re, real(arg) - Returns the real part of a complex vector in a
real vector. May also be written as re(vec)

rnd(arg) - Returns a value equal to a random number
between 0 and the corresponding element of
the argument.

sqrt(arg) - The square root of arg.
vector(arg) - Returns a vector consisting of the integers

from 0 up to the magnitude of its argument.

See the on-line
help for
complete
information and
details on ICL
Scripts and
Simulation
Templates.
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Trigonometric Functions
atan(arg) - The inverse tangent of arg.
cos(arg) - The cosine of arg.
sin(arg) - The sin of arg.
tan(arg) - The tangent of arg.

Cursor Relative Functions
These functions evaluate the vector between cursor 0 and
cursor 1, or utilize one or more of the cursors.

getcursorx - Returns the value of the cursor (x-axis scale).
getcursory - Function with 2 arguments, vec and cursor

number returns the value of the vector
identified by the cursor number.

getcursory0 - Returns the vector value corresponding to
cursor 0 for vector (v(1)).

getcursory1 - Returns the vector value corresponding to
cursor 1 for vector (v(1)).

max - Maximum value.
mean, average - Average value, by integration.
min - Minimum value.
pk_pk - Peak to peak.
rms - Root mean square.
stddev - Standard deviation (rms with average

removed).
tfall - The 10-90% transition using cursor 0 and

cursor 1 to define initial and final value.
trise - The 10-90% transition using cursor 0 and

cursor 1 to define initial and final value.

Vector Functions
The following functions require a single vector argument except
as noted.

alias® - Generates an alias name for vector or vector
expression.

diff® - Compares vectors from different plots.
display® - Prints a summary.
finalvalue - The last value of a vector.
initialvalue - The initial value of a vector.
interpolate - Rescales a vector from another plot to the

current plot.
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isdef - Returns 0 if the argument is not a vector,
else returns 1.

length - Returns the length of the vector.
nextplot - Enumerates a plot list.Tthe first plot’s vector

is returned; if the argument is null, null is
returned at the end. The return value is an
alias to the plot scale. You should not use
plot the resolution operator, plot.pl, for this
vector.

nextvector - Enumerates a vector list; the first vector is
returned if the argument is null. Null is
returned at the end. The return value is an
alias to the vector. If you use the plot
resolution operator, refplot.nv, then you will
enumerate the refplot vectors.

norm - The elements of the argument are all multiplied
by the inverse of the largest argument (i.e.,
the largest magnitude will be 1).

operatingpoint - Returns the magnitude of the first element.
phaseextend - Extends phase past +-180 degrees, and

assumes the initial phase is within the +-180
degree boundary.

pos - Returns a vector whose values are 1 if the
corresponding element of the vector has a
non-0 real part, and 0 otherwise.

sameplot - Returns 1 if a vector is in the current plot.
unitvec(arg) - Returns a vector consisting of all 1s, with

length equal to the magnitude of the argument.

ICL Command Summary Listing

Output Commands
The following commands are used to produce output.

header - Prints header information to the XSPICE
   code model interface.

nopoints - Removes reference points previously
placed on one or more plots by the points
command.

points - Places data points on the IsSpice4 screen.
probe/csdf - Prints vectors in a CSDF style output.
save - Saves a vector for later use.

See the on-line
help for
complete
information and
details on ICL
Scripts and
Simulation
Templates.
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sendplot - Displays a vector in IntuScope.
show - Prints out operating point information for

models.
showmod - Prints out model parameter information.
view - Assigns a vector to a real time view window.
write® - Writes raw data to a file.

Analysis Commands
All of the standard SPICE analysis commands (AC, DC, TRAN,
NOISE, DISTO, SENS, etc.) are available in the ICL.

ac - Performs an ac analysis
dc - Performs a dc sweep analysis
disto - Computes the steady-state harmonic (no

f2overf1 value) or intermodulation products
fftinit® - Initializes the FFT sin/cos table for a 2^radix

data length.
filter® - Filters a vector by numpoints using a

triangular shaped weighted average.
fourier - Performs a fourier analysis.
freqtotime® - Performs a fourier transform from frequency

to time.
noise - Performs a noise analysis.
op - Determines the operating point of the circuit.
poly® - Calculates polynomial coefficients for best

fit to the specified vector.
pwl® - Makes SPICE-compatible piecewise linear

listing in the output window.
pz - Finds the pole and zeros of an ac transfer

function.
rotate® - Rotates a vector by numpoints, left if

numpoints is negative.
sens - Performs an ac or dc sensitivity analysis.
tf - Performs a transfer function analysis.
timetofreq® - Performs a fourier transform from time to

frequency.
timetowave® - Performs an in place wavelet transform using

daub4 wave function.
tran - Performs a time domain analysis.
wavetotime® - Performs an in place inverse wavelet

transform using daub4 wave function.
wavefilter® - Sets all values of the vector less than the

limit to zero.
® Used in IntuScope.



366

ICL COMMAND SUMMARY LISTING

Simulation Commands
The commands in this section control the simulation flow. The
breakpoint command can accept vector-based arguments. These
arguments can be simple comparisons or complicated
expressions.

delete - Deletes a specified breakpoint.
freqtotime - Performs a fourier transform from frequency

to time.
quit - Terminates a simulation.
resume - Continues a simulation after a stop.
runs - Runs a script that was previously saved.
status - Displays the currently active breakpoints and

traces.
step - Iterates the simulation n number times, or

once.
stop - Sets a simulation breakpoint.
where - Identifies a problem node or device.
 
Vector Commands
The following commands are used to operate on vectors.

alias® - Generates an alias name for vector or vector
expression.

copy® -  Copies a vector to the current plot,
interpolating all vectors in the current plot.

destroy® -  Throws away all the data in the plot.
diff® - Displays the difference between the vectors

from two different simulations.
display® - Outputs a list of the currently available

vectors.
function® -  Defines a function.
functionundef® -  Un-defines a function.
let® - Produces a new vector from an existing

vector or expression.
linearize® - Formats transient vector data onto a

linear scale.
nextplot - Returns an alias for the scale of the next plot

or null if no more plots.
sort - Sorts vectors by name or value in ascending

or descending order.
unalias - Removes an alias
unlet® - Removes a let.
® Used in IntuScope.
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Circuit Commands
The following commands can be used inside or outside a control
loop to change the value of a component or model parameter.

alter - Changes a component or model parameter
value.

alterparam - Alters parameter value by the expression value.
echo® - Stores text in the output file.
listing® - Prints the input netlist.
load® - Loads data, previously stored using write.
nameplot® - Changes the name of the current plot.
newplot® - Creates a new plot with a default scale [optional

copy]
nextparam® - Selects next parameter with tolerance, if null

gets first one with tol.
runs® - Runs a script that was previously saved.
rusage - Outputs current resource usage information.
set® - Changes the value of the word given, i.e.,

filetype, fourgridsize, nfreqs, nobreak,
noasciiplotvalue, noprintscale, polydegree,
printmode, rewind, spicedigits, units, width and
colwidth below.

colwidth® - Controls the column width for printtext.
filetype® - Controls the write command file format.
fourgridsize® - Number of points in the fixed grid used for

interpolating when performing Fourier analysis
in the control block.

noasciiplotvalue®- Don’t print the first vector plotted to the left
when doing an ASCII plot.

nobreak® - Print continuous ASCII output plots without
page break.

nfreqs® - The number of frequencies to compute in the
Fourier analysis (Defaults to 10).

noprintscale® - Don’t print the X-axis scale in the leftmost
column when printing tabular data.

polydegree® - The degree of the polynomial that the Fourier
command uses.

printmode® - Changes the behavior of the print command.
rewind® - Sets the output file pointer to the beginning of

the file so that the input netlist and other
information is not included.

® Used in IntuScope.
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spicedigits® - Sets the scientific data precision used for
printout and display.

units® - If this is set to “degrees,” then all trig functions
will use degrees. Otherwise, radians are used.

width® - Sets the width of the page used for the tabular
int data and ASCII plots.

setparam - Sets the current parameter.
setplot® - Sets the currently active plot of the plot with

the given plotname.
unalterparam® - Restores parameter value to the nominal value.
unset® - Clears a variable.
version - Prints the version number.

Control Loop Commands

Control loops are used to perform a series of analyses. All loops
require an end statement. The control loop commands can
accept vector-based arguments. These arguments can be simple
comparisons or complicated expressions. Any combination of
analysis, circuit, and control loop commands can be grouped
together in a script to perform multiple simulations.

break® - Breaks out of a block function.
continue - Continues a loop to the next argument.
dowhile® - Executes the statements between the dowhile

and end lines while the condition is true; the
condition is tested after the loop is executed.

else - Goes with the if command.
end® - Ends a clock function.
foreach® - Does the commands between the foreach

and the end lines, once for each value listed.
goto® - Goes to a label.
if® - Executes the  (...commands...) if the condition

is true.
If-Then-Else® - Allows a decision to be made.
label® - Creates a place for the “goto” to jump.
repeat® - Repeats the statements between the repeat

and end lines, n number or times, or forever.
while® - Executes the statements between the “while”

and “end” lines while the condition is true.

® Used in IntuScope.
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Parameter Manipulation

getparam - Returns the value of a param identified by vec.
nextparam - Enumerates parameters that have tolerances
nextvector - Returns an alias for the next vector, null if none

or the first vector.
null - A special vector that can be used in an

expression without being declared.
param - A special vector used to identify an instance or

model parameter.
tolerance - Returns the tolerance of a parameter.

Inter-Process Communication  (IPC) Commands

The following commands are used for inter-process
communication.

errorstop - Halts a remote script on errors and send the error
message to the designated process.

setquery - Redirects the output from this script to the
named program.

switch - Redirects the output from this script to the
 named program.

Cursor Control Commands

The following commands are used for cursor control.

homecursors® - Sets a cursor 0 to the beginning and cursor
1, and to the end of data.

movecursorleft® -  Moves cursor to the left of value for named
vector.

movecursorright®-  Moves cursor to the right of value for named
vector.

setcursor® - Sets a cursor, identified by cursor number,
to a value.

setnthtrigger® - Same as setTrigger, but repeat num times.
settrigger® - Advances the cursor to time when vector

goes through value +- change with specified
slope.

® Used in IntuScope.

See Chapter 3
for an overview
of Simulation
Templates.
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® Used in IntuScope.

Print Commands

The following commands are used for print communication.

print® - Prints vectors in a SPICE 2 style output.
printcursors® - Prints all cursor values.
printevent - Prints digital events for a digital node.
printname® - Selects next parameter with tolerance, if null

gets first one with tol.
printplot - Prints plot name for which the vector belongs.
printstatus® - Prints simulation status to stdErr and status

window.
printtext® - Prints text strings in columns.
printtol - Prints the parameter tolerance value.
printval® - Prints vector data.
printvector® - Prints un-interpolated values for a saved

vector.

Simulation Templates & Directives

A Simulation Template is an ICL script that has embedded
instructions telling the netlist builder in the schematic capture tool
where to insert design specific information. It is used to expand
SPICE beyond the traditional limitations of the basic AC, DC, and
Transient analyses by allowing parameter variations and multiple
analysis passes to be run under one analysis umbrella. The
following directives are available to be used in Simulation Template
files (*.SCP) along with all ICL commands. Please see the on-line
help for complete information and details on Simulation Templates.

#include -  Inserts the named file into the script stream.
#mprint - Generates “print” commands for user-defined

measurements from the saved vectors.
#noprint - Eliminates the “print” statements generated by

SpiceNet in order to minimize the amount of
memory required during multiple analysis passes.

#nosave - Eliminates the save commands generated by
SpiceNet in order to minimize the amount of
memory required during multiple analysis passes.

#simulation - Generates the simulation control statements.
(Tran, AC, DC, etc.)
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#tolerance - Makes a netlist with tolerances taken from
  SpiceNet.

#vector - Generates save commands from the user-
defined measurement vector list.

IntuScope Commands
The following commands are used exclusively in IntuScope.

askvalues -  Prompts the user to enter a list of numerical
values or expressions that can be evaluated
to single or multi-element vectors.

assertvalid - Evaluates all listed vector names to guarantee
they represent existing or available vectors.

copytodoc -  Copies the specified trace from the current
graph document to another graph document.

destroyvec - Deletes the waveform from the current graph.
loadaccumulator - Loads the accumulator with a single-

element vector.
linearize - Formats transient vector data onto a

   linear scale.
makelabel - Positions a cursor at a vectors data value.
movelabel - Moves most recent label to (x,y) in 0.1% of

window size (lower-left label to upper-left window).
newplot - When a trace is plotted, a new plot, using a

default plot name, will be created.
newplot - When a trace is plotted, a new plot, using a

given plot name, will be created.
plot - Plots the named vector in the active plot.
plotf - Plots the named vector in the active plot and

formats the vectors name.
plotref - Plots the named vectors as a reference

trace.
printunits - Prints a vector’s units in the output window.
rename - Renames the specified vector, which must

be in the currently active plot.
setdoc - Makes the specified graph document the

active document.
setlabel - Sets the border, transparent, rotated, or

justify properties of the last label added.
setlabeltype - Changes the next labels font to plain text

from rich text.

no argument

one argument
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The following functions are used in IntuScope 5 only.

askvalue - Asks the user to enter a number (real or
complex) returned by the function.

derivx - Returns the derivative of a vector with respect
to the default scale vector (usually time or
frequency).

integratex - Returns the integral of a vector with respect
to the default scale vector (usually time or
frequency).

isdisplayed - Returns 1 if the argument is the name of a
vector that is currently displayed as a trace
in IntuScope. Otherwise it’s 0.

minscale - Evaluates the minimum scale value of the
vector between cursor 0 and cursor 1.

maxscale - Evaluates the maximum scale value of the
vector between cursor 0 and cursor 1.

USING ICL SCRIPTS

 or differentiatex

setmargins - Sets the top, bottom, left, and right margins
of the current document in tenths of an inch.

setsource - Specifies the desired source for new data.
setunits - Sets a vector’s units.
setvec - Makes the specified vector the active vector,

and its plot the active plot.
setscaletype - Sets the types of the current plot’s x- and y-

axis scales to linear or logarithmic.
settracecolor - Sets the color of all currently selected traces.
settracestyle - Sets the style of all currently selected traces.
setxlimits - Sets the minimum and maximum x-axis

value range for the currently active trace.
setylimits - Sets the minimum and maximum y-axis  and

x-axis value range for the currently active
trace.

update - Updates all traces in the active document.
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Using ICL Scripts

Simple ICL Scripts
The simplest use of a script is to create an alias for an
expression to use with the .PRINT command.

To establish an alias;

• Enter the alias command in the IsSpice4 Simulation
Control dialog’s Script window.

alias vout 20 * sqrt(v(8)) * @r1[i]

• Add the alias name in a second line under the alias
line.

view tran vout

• Click the DoScript button to execute the script. The
vout waveform will be displayed after the next
simulation is run.

• To place the same items in a control block, enter the
following statements into the input netlist or type them
into the Simulation Setup dialog’s User Statement’s
field in the schematic:

.control
alias output 20 * sqrt(v(8)) * @r1[i]
view tran output
.endc

When a simulation is run, the control block script will be
executed automatically.

To establish a Simulation Breakpoint;

• Place a stop command in the IsSpice4 Simulation
Control dialog’s Script window.

stop when v(8) < 10m

• Run a simulation by clicking the Start button.
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These steps will produce a breakpoint when v(8) < 10m. Output
will be generated up until the breakpoint is reached. It is simple
to include breakpoints in the input netlist.

• In the Simulation Setup dialog in the schematic, enter the
following statement into the User Statement’s field.

*#stop when v(8) < 10m

When the simulation is run the breakpoint will be in effect. It
should be noted that the Stress Alarms feature in ICAP/4 can
also monitor circuit status without forcing the simulator to
pause.

Running Analyses from the Input Netlist
The next step of complexity is encountered when an analysis
must be run from within the control block. In this case, the “dot”
analysis control commands must be moved into the control
block from the netlist. The only exception is the .PRINT
command. Although the ICL print command can be used to
store data in the output file, the .PRINT command outside the
control block is required to produce vectors that can be read by
IntuScope.

The basic steps for creating a control block simulation are:

• Issue a save command to save the desired output vectors
• Issue view commands to set up the real-time display
• Issue stop breakpoint commands
• Issue the analysis control command
• Create new vector formats with the let command
• Use the print command to store the simulation output

For example: .control
save v(8)
view tran v(8)
tran 1n 250n
let test = v(8)^2
.endc
.PRINT TRAN V(8) TEST
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The control block above performs a simple transient analysis.
Although not terribly exciting, it forms the foundation for more
complex simulations. Commands in the control block are executed
in the order they are listed, and are performed before any dot
commands outside of the control block. Therefore, swapping the
tran and the let commands will result in an error.

Temperature Simulations
Performing an analysis at three different temperatures requires
a progression of simulations. To obtain output that can be viewed
in IntuScope, each waveform must have a unique name. This
can be set up quite easily with the alias command. Consider the
following control block;

Output File Data
Input Netlist

.control
save all allcur allpow
view ac v(5)
set temp=-55
alias v55m v(5)
ac dec 10 100k 100meg
print v55m
set temp=55
alias v55 v(5)
ac dec 10 100k 100meg
print v55
set temp=125
alias v125 v(5)
ac dec 10 100k 100meg
print v125
.endc
*.PRINT AC V55M V55 V125

• The first command encountered within the control block is
the save command. This line saves all voltages, currents,
and device power dissipations. The save command must
be present once the analysis is moved into the control block
so that output vectors are created for the desired output
variables.
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• The next command is the “view” command. Since the
analysis has been moved into the control block, the real time
display (typically resulting from the .PRINT) will not occur.
Hence, the view command is issued.

• Next, the set command is used to set the .OPTIONS
parameter TEMP (global circuit temperature). As with the
previous two commands, once the analysis is moved
inside the control block, the options must be altered with the
set command.

• At this point, the analysis is performed. Notice that the
syntax is identical to the standard .AC command.

• An alias is then established for the node voltage v(5). This
alias produces a unique header for the data at each
temperature.

• A print statement produces tabular output for the
temperature run by printing the alias.

• To create a curve family in IntuScope, the previous two
steps can be replaced with the ICL sendplot command.

From here, the syntax is repeated for each temperature.

• Finally, a .PRINT line is placed outside the control block for
compatibility with the IntuScope Waveforms menu for the
tabulated data. The .PRINT line is commented out with an
asterisk to stop the data from being redundantly stored in
the output file. If a curve family is created, then the *.PRINT
statement is not needed.

Multiple Analyses and Breakpoints
The most straightforward implementation of a breakpoint was
discussed earlier. When an analysis control statement is added,
the simulation becomes more robust. This is because the
simulation is not terminated at the breakpoint. It is merely paused
until another command restarts the simulation, or the simulation
is aborted. In the following script, the simple simulation and
breakpoint are combined.
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stop when @r1[i] > 10m
tran 1n 250n
print all
delete all
stop when @r1[i] > 15m
resume

The delete command removes the breakpoint established by
the stop command and allows the simulation to continue.

Simulation Loop
In the following script, a loop is generated in which a resistor
value is swept, and a diode’s mean power dissipation is monitored.
The control block is established with the repeat command and
will execute the loop commands 10 times, or until the break
command is encountered.

save all allcur allpow
view tran @d3[p]
repeat 10
tran 1n 150n
if mean(@d3[p]) > 15m
alter @r17[resistance]=@r17[resistance]+50
print mean(@d3[p])
else
print @r17[resistance] mean(@d3[p])
break
end if
end repeat

The 10 parameter on the repeat line could have been removed.
However, by limiting the number of times the loop is performed,
a safety net is established allowing the simulation to terminate
within a reasonable time. A while or dowhile loop would produce
similar results using the condition in the If statement.

Note that the if, while, and dowhile loops will only check the power
dissipation after the analysis is complete. Hence, the need to
reduce the power dissipation vector to a scalar quantity with the
mean function. Other functions such as RMS and standard
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deviation can be defined using the mean function (see the ICL
function command in the Vector section). To check the
instantaneous power dissipation during the simulation, a stop
breakpoint command is required.

Calculating Harmonics
The circuit contains two sin sources that are multiplied together
with a B element. The script sets up several variables and then
moves imaginary cursors into position in order to record the
proper mean values of the waveforms. (The mean function is
one of several cursor relative functions outlined previously in
this chapter.) The rest of the script calculates and prints the
frequency and associated harmonic.

* How to calculate Harmonic components with ICL
v1 1 0 1 sin 0 1 1K
r1 1 0 1
v2 2 0 1 sin 0 1 2K
r2 2 0 1
b2 5 0 v = v(1)*v(2)
r3 5 0 1
.control
view tran V(5)
tran 1u 2m 0 1u ; do transient analysis
mintime = 0.1u ; minimum window edge
maxtime = 2m ; maximum window edge
frequency = 1K ; base frequency
maxfreq = 6K ; max frequency of interest
delta = 1K ; frequency increment
dowhile (frequency < maxfreq) ; go through all frequency values
setcursor(0, mintime) ; move cursor 0 to the min window edge
setcursor(1, maxtime) ; move cursor 1 to the max window edge
vsin = v(5)*sin(2*180*frequency*TIME)
Vcos = v(5)*cos(2*180*frequency*TIME)
vsinmean = mean(vsin) ; calculate harmonic
vcosmean = mean(vcos)
harmonic = sqrt(vsinmean*vsinmean+vcosmean*vcosmean)
print frequency
print harmonic ; print results
frequency = frequency + delta ; increment frequency
end
.endc
.PRINT TRAN V(1) V(2) V(5)
.END
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Appendix A: Solving SPICE Convergence Problems

The following techniques on solving convergence problems
are taken from various sources including:

[1] Meares, L.G., Hymowitz C.E. “SIMULATING WITH

SPICE”, Intusoft, 1988
[2] Muller, K.H. ”A SPICE COOKBOOK”, Intusoft, 1990
[3] Meares, L.G., Hymowitz C.E. “SPICE APPLICATIONS

HANDBOOK”, Intusoft, 1990
[4] Intusoft Newsletters, various dates from 1986 to

present
[5] The Designer's Guide to SPIC and Spectre, Kenneth

S. Kundert, Kluwer Academic Publishers, 1995
[6] The SPICE Book, Andrei Vladimirescu, John Wiley

& Sons Inc,, 1994
[7] Inside SPICE, Ron Kielkowski, McGraw-Hill, Inc.

1994

What is Convergence? (or in my case, Non-Convergence)

The answer to a nonlinear problem, such as those in the SPICE
DC and Transient analyses, is found via an iterative solution.
For example, IsSpice4 makes an initial guess at the circuit’s
node voltages and then, using the circuit conductances,
calculates the mesh currents. The currents are then used to
recalculate the node voltages, and the cycle begins again. This
continues until all of the node voltages settle to values that are
within specific tolerance limits. These limits can be altered
using various .Options parameters such as Reltol, Vntol, and
Abstol.

See the
Convergence
Wizard for more
help with
solving
convergence
problems.
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If the node voltages do not settle down within a certain number
of iterations, the DC analysis will issue an error message such
as “No convergence in DC analysis”, “Singular Matrix”, or
“Gmin/Source Stepping Failed”. SPICE will then terminate the
run because both the AC and transient analyses require an
initial stable operating point in order to proceed. During the
transient analysis, this iterative process is repeated for each
individual time step. If the node voltages do not settle down, the
time step is reduced and SPICE tries again to determine the
node voltages. If the time step is reduced beyond a specific
fraction of the total analysis time, the transient analysis will
issue the error message, “Time step too small,” and the
analysis will be halted.

Problems come in all shapes, sizes, and disguises, but
convergence problems are usually related to one of the following:

® Circuit Topology
® Device Modeling
® Simulator Setup

The DC analysis may fail to converge because of incorrect
initial voltage estimates, model discontinuities, unstable/bistable
operation, or unrealistic circuit impedances. Transient analysis
failures are usually due to model discontinuities or unrealistic
circuit, source, or parasitic modeling. In general, you will have
problems if the impedances, or impedance changes, do not
remain reasonable. Convergence problems will result if the
impedances in your circuit are too high or too low.

The various solutions to convergence problems fall under one
of two types. Some are simply band-aids, which merely attempt
to fix the symptom by adjusting the simulator options. Other
solutions actually affect the true cause of the convergence
problems.

The following techniques can be used to resolve 90 to 95% of
all convergence problems. When a convergence problem is
encountered, you should start with the first suggestion and
proceed with the subsequent suggestions until convergence is
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achieved. The suggestions are structured so that they can be
incrementally added to the simulation. The sequence is also
defined so that the initial suggestions will be of the most benefit.
Note that suggestions that involve simulation options may
simply mask the underlying circuit instabilities. Invariably, you
will find that once the circuit is properly modeled, many of the
“options” fixes will no longer be required!

General Discussion

Many power electronics convergence problems can be solved
with two option parameters, Gmin and Rshunt. The Gmin
option is available in all SPICE 2 and 3 programs. Gmin is the
minimum conductance across all semiconductor junctions.
The conductance is used to keep the matrix well conditioned.
Its default value is 1E-12mhos. Setting Gmin to a value between
1n and 10n will often solve convergence problems. Setting
Gmin to a value that is greater than 10n may cause convergence
problems.

The Rshunt option causes IsSpice4 to insert a resistor from
every node in the circuit to ground. Rshunt is available only in
programs such as IsSpice4 that have incorporated the XSPICE
enhancements [36]. Setting Rshunt to a value between 100MEG
and 1G will typically help. Setting Rshunt to a value of 100K may
cause convergence problems.

SPICE does not always converge when relaxed tolerances are
used. One of the most common problems is the incorrect use
of the ".Options" parameters. For example, setting the tolerance
option (Reltol) to a value that is greater than .01 will often cause
convergence problems.

The default numerical integration method is the Trapezoidal
method. Some circuits will converge better during the transient
analysis when the Gear integration method is used. You can
invoke Gear integration by adding the statement, .OPTIONS
METHOD=GEAR. The Gear method works well for most power
electronics simulations.
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Setting the value of Abstol to 1u will help in the case of circuits
that have currents that are larger than several amps. Again, do
not overdo this option. Setting Abstol to a value that is greater
than 1u will cause more convergence problems than it will
solve.

After you’ve performed a number of simulations, you will
discover the options that work best for your circuits. You can
save the .Options line in a text file and use the “.INC filename”
command to import the text file. This will allow you to save
several .Options lines in text files and explore the use of
different sets of options.

If all else fails, you can almost always get a circuit to simulate
in a transient simulation if you begin with a zero voltage/zero
current state. This makes sense if you consider the fact that the
simulation always starts with the assumption that all voltages
and currents are zero. The simulator can almost always track
the nodes from a zero condition. Running the simulation will
often help uncover the cause of the convergence failure.

The above recommendation is only true if your circuit is
constructed properly and the netlist is syntactically correct.
Most of the time, minor mistakes are the cause of convergence
problems. Error messages will help you track down the problems,
however, a good technique is to visually scan each line of the
netlist and look for anomalies. It may be tedious, but it’s a
proven way to weed out mistakes.

Not all convergence failures are a result of the SPICE
software! Convergence failures may identify many circuit
problems. Check your circuits carefully, and don’t be too
quick to blame the software.

If you’ve tried everything you can think of, and you still can’t get
your circuit to converge, you may contact Intusoft’s Technical
Support staff at info@intusoft.com We can also be reached on
the Internet at http://www.intusoft.com.
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IsSpice4 - New Convergence Algorithms

In addition to automatically invoking the traditional source
stepping algorithm, IsSpice4 contains a superior algorithm
called “Gmin Stepping”. This algorithm uses a constant minimal
junction conductance, which keeps the sparse matrix well
conditioned, and a separate variable conductance to ground at
each node, which serves as a DC convergence aid. The
variable conductances cause the solution to converge more
quickly. They are then reduced, and the solution is recomputed.
The solution is eventually found with a sufficiently small
conductance. Then the conductance is removed entirely in
order to obtain a final solution. This technique has proven to
work very well, and IsSpice4 selects it automatically when
convergence problems occur. The suggestion (made in a
number of textbooks) of increasing the .Options Gmin value in
order to solve DC and operating point convergence problems
is performed automatically by this new algorithm. Gmin may still
be increased (relaxed) for the entire simulation by setting the
.Options Gmin value, but this should only be done as a last
resort.

Non-Convergence Error Messages/Indications

The following is a list of the key error messages that indicate
that convergence has not occurred. In most cases, SPICE 3 will
also indicate the element or node that is the source of the
failure. This is a feature that is not found in most other SPICE
2 simulators.

• DC Analysis (which includes the .OP analysis and the small
signal bias solution that is performed prior to the AC analysis,
or Initial transient solution that is calculated prior to the
Transient analysis) - “No Convergence in DC analysis”, or
“PIVTOL Error”. SPICE 3 programs such as IsSpice4 issue
a “Gmin/Source Stepping Failed” or “Singular Matrix”
message.
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• DC Sweep Analysis (.DC) - “No Convergence in DC analysis
at Step = xxx.”

• Transient Analysis (.TRAN) - “Internal timestep too small.”

Convergence Solutions

Important Note: The suggestions below are applicable to most
SPICE programs, especially if they are Berkeley SPICE 3
compatible. If several .Options parameters are used, you can
put them on the same line and separate them with spaces.

DC Convergence Solutions

1. Check the circuit topology and connectivity.
“.Options LIST” will provide a nice summary printout of the
nodal connections. It produces a flattened netlist of the entire
circuit in the output file. If you are using the SpiceNet schematic
entry program, you should perform a “ReNet” to insure that
unique node numbers and reference designations are being
used and that all circuit elements are properly connected.

Common mistakes and problems:
• Make sure that all of the circuit connections are valid.

Check for incorrect node numbering or dangling nodes.
Also, verify component polarity.

• Make sure you didn’t use the letter O instead of a zero (0).
• Check for syntax mistakes. Make sure that you used the

correct SPICE units (i.e., MEG instead of M(milli) for 1E6).
• Make sure that there’s a DC path from every node to

ground.
• Make sure that there are at least two connections at every

node.
• Make sure that there are no loops of inductors or voltage

sources.
• Make sure that there are no series capacitors or current

sources.

DC CONVERGENCE SOLUTIONS

See the
Convergence
Wizard for more
help with
solving
convergence
problems.
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• Place the ground (node 0) somewhere in the circuit. Be
careful when you use floating grounds; you may need to
connect a large resistor from the floating node to ground.

• Make sure that voltage/current generators use realistic
values, and verify that the syntax is correct.

• Make sure that dependent source gains are correct, and
that B element expressions are reasonable. If you are
using division in an expression, verify that division by zero
cannot occur.

• Make sure that there are no unrealistic model parameters;
especially if you have manually entered the model into the
netlist.

• Make sure that all resistors have a value. In SPICE 3,
resistors without values are given a default value of 1
kOhm.

• Negative capacitor and inductor values are allowed in
SPICE 3. They will not be flagged as an error, but can cause
timestep problems, depending on the topology of the
circuit.

2. AUTOTOL, A New IsSpice4 Convergence Aid
There are certain cases for which DC convergence fails because
of singularities in the DC operating point. A zero order hold is
an example that at DC cascade a Z transform differentiator with
a Laplace integrator. The resultant product of 0 times infinity
produces a non-convergent DC result; however, an AC
crossover network eliminates the problem node so that it is fair
to remove it from the convergence test. Increasing VNTOL can
remove the non-convergent behavior; however, vntol is global
and increasing it to solve the problem at one node will reduce
the DC operating point accuracy. If the user were to manually
enter VNTOL for each, the bookkeeping management would
become difficult. What Intusoft has done is to introduce a new
IsSpice4 option, AUTOTOL. An array of values holding vntol[]
and abstol[] for each node and source current is initialized with
the VNTOL and ABSTOL values. If AUTOTOL is set larger than
1, then when a node or branch current fails to converge, its
tolerance value is multiplied by AUTOTOL. Setting AUTOTOL=2
will rapidly eliminate offending nodes. Smaller values will make
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the elimination occur more slowly and have a less sever affect.
If AUTOTOL is set to less than -1, the same thing occurs using
the absolute value of AUTOTOL. The ".OUT" file reports the
activity so that you can isolate problem nodes and sources.
AUTOTOL is only active for the initial DC operating point
calculation.

3. Increase ITL1 to 400 in the .OPTIONS statement.
Example: .OPTIONS ITL1=400

This increases the number of DC iterations that IsSpice4 will
perform before it gives up. In all but the most complex circuits,
further increases in ITL1 won’t typically aid convergence.

4. Set ITL6 =100 in the .OPTIONS statement. (ITL6 is only
used for SPICE 2 based simulators). Srcsteps is used for
SPICE 3 simulators.

Example: .OPTIONS SRCSTEPS=100
This invokes the source stepping algorithm. The value is the
number of steps. This step is unnecessary for IsSpice4
users, since source stepping is automatically invoked after
both the default method and the Gmin stepping algorithms
have been attempted. Note for SPICE 2 users: this is an
undocumented Berkeley SPICE 2G option.

Source stepping sets all of the stimulus functions (voltage
sources, etc.) to a near zero value in the hopes of easing the
calculation of the operating point solution. When a solution is
found, the stimulus sources are increased toward their final DC
values, and another operating point is calculated using the
previous solution as a “seed”. This process continues until the
sources are at the full DC values and an operating point in
produced.

5. Add .NODESETs
Example: .NODESET V(6)=0

View the node voltage/branch current table in the output file.
SPICE 3 produces one even if the circuit does not converge.
Add .NODESET values for the top level circuit nodes (not the
subcircuit nodes) that have unrealistic values. You do not need
to nodeset every node. Use a .NODESET value of 0V if you do
not have a better estimation of the proper DC voltage. Caution
is warranted, however, for an inaccurate Nodeset value may
cause undesirable results.
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6. Add resistors and use the OFF keyword.
Example: D1   1  2  DMOD OFF

RD1  1  2  100MEG
Add resistors across diodes in order to simulate leakage. Add
resistors across MOSFET drain-to-source connections to
simulate realistic channel impedances. This will make the
impedances reasonable so that they will be neither too high nor
too low. Add ohmic resistances (RC, RB, RE) to transistors.
Use the .Options statement to Reduce Gmin by an order of
magnitude.

Next, you can also add the OFF keyword to semiconductors
(especially diodes) that may be causing convergence problems.
The OFF keyword tells IsSpice4 to first solve the operating
point with the device turned off. Then the device is turned on,
and the previous operating point is used as a starting condition
for the final operating point calculation.

7.Use PULSE statements to turn on DC power supplies
Example: VCC  1  0 15 DC
becomes  VCC  1  0 PULSE 0 15

This allows the user to selectively turn on specific power
supplies. This is sometimes known as the “Pseudo-Transient”
start-up method. Use a reasonable rise time in the PULSE
statement to simulate realistic turn on. For example,

V1  1  0  PULSE  0  5  0  1U
will provide a 5 volt supply with a turn on time of 1 ms. The first
value after the 5 (in this case, 0) is the turn-on delay, which can
be used to allow the circuit to stabilize before the power supply
is applied.

8. Set RSHUNT=xxx in the .OPTIONS statement.
Example: .OPTIONS RSHUNT=100MEG

The Rshunt option places a resistor, of the specified value, from
every node in the circuit to ground. Note: if this works, you have
indeed changed the operation of the circuit, so make sure that
you verify the results carefully.
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9. Add UIC (Use Initial Conditions) to the .TRAN statement.
Example: .TRAN .1N 100N UIC

Insert the UIC keyword in the .TRAN statement. Use Initial
Conditions (UIC) will cause SPICE to completely bypass the
bias point calculation. You should add any applicable .IC and
IC= initial conditions statements to assist in the initial stages of
the transient analysis. Be careful when you set initial conditions,
for a poor setting may cause convergence difficulties.

AC Analysis Note: Solutions 7 through 9 should be used only
as a last resort, because they will not produce a valid DC
operating point for the circuit (all supplies may not be turned On
and circuit may not be properly biased). Therefore, you cannot
use solutions 7-9 if you want to perform an AC analysis,
because the AC analysis must be proceeded by a valid operating
point solution. However, if your goal is to proceed to the
transient analysis, then solutions 7-9 may help you and may
possibly uncover the hidden problems that plague the DC
analysis.
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DC Sweep Convergence Solutions

1. Check circuit topology and connectivity.
This item is the same as item 1 in the DC analysis.

2. Set ITL2=100 in the .OPTIONS statement.
Example: .OPTIONS ITL2=100

This increases the number of DC iterations that SPICE will
attempt before it gives up.

3. Increase or decrease the step values that are used in the
.DC sweep.

Example: .DC VCC  0  1  .1
becomes  .DC VCC  0  1  .01

Discontinuities in the SPICE models can cause convergence
problems. The use of larger steps may help to bypass the
discontinuities, while the use of smaller steps may help IsSpice4
find the intermediate answers that will be used to find the point
that doesn’t converge.

4. Do not use the DC sweep analysis.
Example: .DC VCC  0  5  .1

VCC  1  0
becomes .TRAN .01  1

VCC  1  0  PULSE  0  5  0  1
In many cases, it is preferable to use the transient analysis to
ramp the appropriate voltage and/or current sources. The
transient analysis tends to be more robust, and is sometimes
faster.

Transient Convergence Solutions

1. Check circuit topology and connectivity.
This item is the same as item 1 in the DC analysis.

2. Set RELTOL=.01 in the .OPTIONS statement.
Example: .OPTIONS RELTOL=.01

This option is encouraged for most simulations, since the
reduction of Reltol can increase the simulation speed by 10 to

DC SWEEP CONVERGENCE SOLUTIONS
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50%. Only a minor loss in accuracy usually results. A useful
recommendation is to set Reltol to .01 for initial simulations, and
then reset it to its default value of .001 when you have the
simulation running the way you like it and a more accurate
answer is required. Setting Reltol to a value less than .001 is
generally not required.

3. Reduce the accuracy of ABSTOL/VNTOL if current/
voltage levels allow it.

Example: . OPTION ABSTOL=1N  VNTOL=1M
Abstol and Vntol should be set to about 8 orders of magnitude
below the level of the maximum voltage and current. The
default values are Abstol=1pA and Vntol=1mV. These values
are generally associated with IC designs.

4. Set ITL4=500 in the .OPTIONS statement.
Example: .OPTIONS ITL4=500

This increases the number of transient iterations that SPICE
will attempt at each time point before it gives up. Values that are
greater than 500 won’t usually bring convergence.

5. Realistically Model Your Circuit; add parasitics, especially
stray/junction capacitance.
The idea here is to smooth any strong nonlinearities or
discontinuities. This may be accomplished via the addition of
capacitance to various nodes and verifying that all
semiconductor junctions have capacitance. Other tips include:

• Use RC snubbers around diodes.
• Add Capacitance for all semiconductor junctions (3pF for

diodes, 5pF for BJTs if no specific value is known).
• Add realistic circuit and element parasitics.
• Watch the Real-time display (If you have IsSpice4) and

look for waveforms that transition vertically (up or down) at
the point during where the analysis halts. These are the key
nodes that you should examine for problems.

• If the .Model definition for the part doesn’t reflect the
behavior of the device, use a subcircuit representation.
This is especially important for RF and power devices such
as RF BJTs and power MOSFETs. Many vendors cheat
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and try to “force fit” the SPICE .MODEL statement in order
to represent a device’s behavior. This is a sure sign that the
vendor has skimped on quality in favor of quantity. Primitive
.MODEL statements CAN NOT be used to model most
devices above 200MEGHz because of the effect of package
parasitics. And .MODEL statements CAN NOT be used to
model most power devices because of their extreme
nonlinear behavior. In particular, if your vendor uses a
.MODEL statement to model a power MOSFET, throw
away the model. It’s almost certainly useless for transient
analysis.

6. Reduce the rise/fall times of the PULSE sources.
Example: VCC  1  0  PULSE  0  1  0  0   0
becomes VCC  1  0  PULSE  0  1  0  1U  1U

Again, we are trying to smooth strong nonlinearities. The pulse
times should be realistic, not ideal. If no rise or fall time values
are given, or if 0 is specified, the rise and fall times will be set
to the TSTEP value in the .TRAN statement.

7. Use the .OPTIONS RAMPTIME=xxx statement to ramp
up all of the sources.

Example: .OPTIONS RAMPTIME=10NS
Ramptime causes all the independent sources to be ramped up
from zero to their initial values at the beginning of the transient
analysis. The time is specified by the user. This may be quite
helpful if you’re having trouble getting the transient analysis to
start. Remember to give enough time for the sources to ramp
up. If a ramp time is too short, it may cause disturbances that
require a long time to settle, or may even cause further
convergence problems.

8. Add UIC (Use Initial Conditions) to the .TRAN line.
Example: .TRAN .1N 100N UIC

If you are having trouble getting the transient analysis to start
because the DC operating point can’t be calculated, insert the
UIC keyword in the .TRAN statement. UIC will cause SPICE to
completely bypass the DC analysis. You should add any
applicable .IC and IC= initial conditions statements to assist in
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the initial stages of the transient analysis. Be careful when you
set initial conditions, for a poor setting may cause convergence
difficulties. (See the Altinit and Ramptime options for more help
with UIC cases).

9. Change the integration method to Gear (See also Special
Cases below).

Example: .OPTIONS METHOD=GEAR
This option causes SPICE 3 to use Gear integration to solve the
transient equations, as opposed to the default method of
trapezoidal integration. The use of the Gear integration method
should be coupled with a reduction in the Reltol value. This will
produce answers that approach a more stable numerical
solution. Trapezoidal integration tends to produce a less stable
solution that can produce spurious oscillations. Gear integration
often produces superior results for power circuitry simulations,
due to the fact that high frequency ringing and long simulation
periods are often encountered.

Gear integration is very valuable, especially for Power Supply
designers. It is included in all IsSpice4 versions. Many popular
versions of SPICE, including Pspice™, Hspice™ and Electronics
Workbench™ do NOT let you set this valuable and important
option.

10. Use the VSECTOL argument to enable the largest error
in volts-seconds possible between time steps.

Example: .OPTIONS VSECTOL=50NS
VSECTOL reduces the time step if the product of the absolute
value of the error in predicted voltage and the time step
exceeds the VSECTOL specification.  Using VSECTOL to
control the time step produces higher accuracy during the turn-
off transition and uses less computational resources when
there is no switching activity.
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Modeling Tips

Device modeling is one of the hardest steps encountered in the
circuit simulation process. It requires not only an understanding
of the device’s physical and electrical properties, but also a
detailed knowledge of the particular circuit application.
Nevertheless, the problems of device modeling are not
insurmountable. A good first-cut model can be obtained from
data sheet information and quick calculations, so the designer
can have an accurate device model for a wide range of
applications.

Data sheet information is generally very conservative, yet it
provides a good first-cut of a device model. In order to obtain the
best results for circuit modeling, follow the rule: “Use the
simplest model possible”. In general, the SPICE component
models have default values that produce reasonable first order
results. Here are some helpful tips:

• Don’t make your models any more complicated than they
need to be. Overcomplicating a model will only cause it to
run more slowly, and will increase the likelihood of an error.

• Remember: modeling is a compromise.
• Don’t be afraid to test your models, especially the ones you

did not create.
• Create subcircuits that can be run and debugged

independently. Simulation is just like being at the bench. If
the simulation of the entire circuit fails, you should break it
apart and use simple test circuits to verify the operation of
each component or section.

• Document the models as you create them. If you don’t use
a model often, you might forget how to use it.

• Be careful when you use models that have been produced
by hardware vendors. Many have syntactical errors, and
certainly DO NOT fully reflect the characteristics of the real
part. Check the documentation for a list of characteristics
that are supported by the model.
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• Semiconductor models should always include junction
capacitance and the transit time (AC charge storage)
parameters.

• If the .Model definition for a large geometry device doesn’t
reflect the behavior of the device, use a subcircuit
representation.

• Be careful when using behavioral models for power devices.
Many SPICE vendors try to pass off power semiconductor
models using behavioral modeling techniques. Most SPICE
vendors do not have the expertise to create sophisticated
subcircuit representations. Behavioral models have their
place, but in the case of power devices, they will usually
NOT exhibit many important second order effects.

• And lastly, there is no substitute for knowing what
you’re doing!!

Intusoft makes available an inexpensive modeling program.
The program, called SpiceMod, is an easy-to-use utility that
makes semiconductor models (Diode, Zener Diode, BJT, Power
BJT, Darlington BJT, MOSFET, Power MOSFET, JFET, Triac,
IGBT, SCR) from data sheet parameters. The models work with
ANY SPICE simulator. It has two distinct advantages:

1) It allows you to make a SPICE model based on your design
specifications. For example, you can make a model for 1A 100V
diode. You can then simulate your circuit and refine the
boundaries for the type of part required. You can assign the
actual part number at a later time. This eliminates the need for
your SPICE vendor to supply models for every possible part
number.

2) Models are created from data sheet values. If you do not
have all of the parameters, SpiceMod will estimate the data you
do not have, based on the data you do have. Therefore, it never
leaves key SPICE parameters (capacitance, transit time, etc.)
at their default values. The use of these default values is the
simplest way to make a good model useless.

SpiceMod is highly recommended.
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Repetitive And Switching Simulations

Switching simulations refer to simulations that have a significant
number of repetitive cycles, such as those found in SMPS
simulations. Simulations such as these can experience a large
number of rejected timepoints. Rejected timepoints are due to
the fact that SPICE has a dynamically varying timestep, which
is controlled by constant tolerance values (Reltol, Abstol,
Vntol). An event that occurs during each cycle, such as the
switching of a power semiconductor, can trigger a reduction in
the timestep value. This is caused by the fact that SPICE
attempts to maintain a specific accuracy, and adjusts the
timestep in order to accomplish this task. The timestep is
increased after the event, until the next cycle, when it is again
reduced. This timestep hysteresis can cause an excessive
number of unnecessary calculations. To correct this problem,
we can regress to a SPICE version 1 methodology and force
the simulator to have a fixed timestep value.

To force the timestep to be a fixed value, set the Trtol value to
100, i.e., .OPTIONS TRTOL=100. The default value is 7. The
Trtol parameter controls how far ahead in time SPICE tries to
jump. The value of 100 causes SPICE to try to jump far ahead.
Then set the Tmax value in the .TRAN statement to a value that
is between 1/10 and 1/100 of the switching cycle period (.TRAN
tStep tStop tStart TMAX). This has the opposite effect; it forces
the timestep to be limited. Together, they effectively lock the
simulator timestep to a value that is between 1/10 and 1/100 of
the switching cycle period, and eliminate virtually all of the
rejected timepoints. These settings can result in over a 100%
increase in speed!

Note: In order to verify the number of accepted and rejected
timepoints, you may issue the .OPTIONS ACCT parameter and
view the data at the end of the output file.
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Other Convergence Helpers

For those users who are using a version of SPICE based on
Berkeley SPICE 3, such as IsSpice4, several other options are
also available:

1. Gminsteps (DC Convergence)
Example: .OPTIONS GMINSTEPS=200

The Gminsteps option adjusts the number of Gmin increments
that will be used during the DC analysis. Gmin stepping is
invoked automatically when there is a convergence
problem. Gmin stepping is a new algorithm in SPICE 3 that
greatly improves DC convergence.

2. ALTINIT function (Transient Convergence with UIC)
Example:  . OPTION ALTINIT=10

Setting Altinit to 1 causes an alternate (more lenient) algorithm
to be used when the UIC keyword is issued in the .TRAN
statement. Normally, this alternate algorithm is automatically
invoked when the default method fails. A number other than 1
refers to the initial timestep jump, which will be used to determine
the first timepoint. The default value is 1E-20 seconds. It can be
varied from 1E-10 to 1E-30 seconds. The value of 1E-10 (i.e.,
Altinit=10) will reduce the accuracy of the first timepoint, but will
make it easier for IsSpice4 to start the transient simulation. The
Altinit option is unique to IsSpice4.

Special Cases

Mosfets - Check the connectivity. Connecting two gates
together, but to nothing else, will give a PIVTOL/Singular matrix
error. Check the model Level parameter. SPICE 2 programs do
not behave properly when MOSFETs of different levels are
used in the same simulation.
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SPICE 3 Convergence Helpers

For those users who are running a version of SPICE based on
Berkeley SPICE 3, several other options are also available.

1. Gminsteps (DC Convergence) - Same as ITL6
Example: .OPTIONS GMINSTEPS=200

The Gminsteps option adjusts the number of increments that
Gmin will be stepped during the DC analysis. Gmin stepping is
invoked automatically when there is a convergence problem.
Gmin stepping is a new algorithm in IsSpice4 that greatly
improves DC convergence.

2. ALTINIT function (Transient Convergence)
Example:.OPTIONS ALTINIT=1

Setting ALTINIT to one causes the default algorithm used when
the UIC (use initial condition) keyword is issued in the .TRAN
to be bypassed in favor of a second more lenient algorithm.
Normally, the second algorithm is automatically invoked when
the default method fails.
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The Device and Model Parameter tables summarize all the
input and output parameters available for each of the devices
and models in IsSpice4. The tables can be found in the on-line
help. Use the Search button to locate the “device parameters”
topic or the type of device you are interested in. Help on the
device’s parameter list will be available. Both Parameter names
and descriptions are stored.

There are up to three different sections for each type of device
(Input-only, Input-Output, and Output-only). Some devices will
also have a set of model parameters. Input parameters to
devices and models are simply parameters that can occur on
a device or model definition line in the form of “keyword” (such
as the BJT device area parameter) or “keyword=value” (such
as BF=100, the BJT beta parameter). These parameters can
be set by the ICL alter command. Output parameters  are
computed measurements that provide information about a
device or model. These parameters are specified as
“@device[keyword]” and are available for the most recent point
computed or, if specified in a .PRINT or ICL save statement, for
an entire simulation as a normal output vector. See the .PRINT
and ICL alter, save, view, show, showmod and print functions
for more information.

Some variables are listed as both input and output, and their
output simply returns the value stated in the netlist, or the
default value after the simulation has been run. Many such
input variables are available as output variables in a different
format, such as the initial condition vectors, which can be
retrieved as individual initial condition values. Finally, internally
derived values are for output only and are provided mainly for
transient and operating point output purposes.
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Appendix C: IsSpice4 Error and Warning Messages

The following error and warning messages are arranged
alphabetically under two headers, Errors and Warnings. A brief
explanation accompanies each message.

It should be noted that IsSpice4 does not abort a simulation just
because an error is encountered. Instead, an message is
placed in an error file and displayed in the Errors window.
IsSpice4 tries to complete the simulation unless a serious error
is encountered. Frequently, this will allow analyses not affected
by the error to run properly. This is different from SPICE 2
programs where any error immediately stopped the simulation.

IsSpice4 will notify you that an error has occurred by blinking a
question mark in the simulation status field (upper left corner of
the screen). You may choose to abort the simulation or let it
continue. The real time waveform displays can be used as an
indication of the simulation's validity.

When running from ICAPS, the error file will automatically be
opened using the IsEd text editor if an error is detected during
simulation.

Errors

Error: .TRAN step time less than or equal to zero
This error will occur when the TSTEP parameter in the .TRAN
statement is less than or equal to zero.

Error: length too small to interpolate
This error will occur when there is no raw internal data to
interpolate. This can happen if an analysis does not run
because of a syntax error in the control statement. For example,
the following line, with an incorrect TSTART parameter, will
generate this message;

.tran 1n 100n 0 100
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Error: no such subcircuit: <name>
This means that a subcircuit call line appears for a subcircuit
that is not defined in the netlist. For instance, if the line “X1 2 3
4 SWT” appears in the netlist, but there is no subcircuit
definition (.SUBCKT) for SWT.

Error: no such vector
This error will appear when a .PRINT statement is not included
for an analysis type being run. For instance, if an AC analysis
was run and there was no .PRINT AC in the circuit netlist this
error message would appear. This error can also occur if a
.PRINT statement contains a reference to a nonexistent node
or voltage source.

Error: realloc
This error will occur when there is not enough contiguous
memory left for the IsSpice4 to use. The memory use meter will
display all the available memory, not available contiguous
memory. Therefore, it is very likely the memory use meter will
show memory left even though it may not be able to be used.

Error: unable to find definition of model <name> - default
assumed

This error message will appear if there is no .MODEL statement
for a model name referenced on a device call line. This will
happen if the model, name, was misspelled in either the
.MODEL statement or the call line. This can also occur if the
wrong number of nodes is given for a device, because IsSpice4
may assume that the model name is a node number or an extra
node number is the model name.

For instance, D1 1 3 9 9 DLASER will generate;

Error unable to find definition of model 9 - default assumed.

Note: Since the BJT model has an optional substrate node a
misspelled model name may be interpreted as an node name
for the substrate node. In this case, the following may occur.
The lines;
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Q1 1 2 3 qn
.MODEL qn1 NPN

will generate the error message;

unable to find definition for model - default assumed
warning: singular matrix check nodes qn and qn

The string “qn” was assumed to be the optional substrate node
and the model name was assumed to be missing.

Error: unimplemented control card
This is caused by a misspelled or unknown control statement.
For example;

.trn 1n 100n

Error: unknown model type <name> - ignored
This error is caused by use of an unknown model type name.
For a list of the valid model types, see the .MODEL statement
syntax. For instance,

.MODEL SWT S(RON=1 ROFF=100)

would generate the message

.MODEL SWT S(RON=1 ROFF=100)
unknown model type s - ignored

This is notifying you that the input file has a reference to a
nonexistent model type, “s”. The correct type should have been
SW.

Error: unknown device type
This means that the keyletter in the reference designation is
unknown. This is commonly caused by a typographical error.
For example, the following line was meant to call a lossy
transmission line;

p1 1 2 3 4 lossy
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The key letter for the lossy line element is “o” not “p”. Since the
keyletter “p” does not represent any device, IsSpice4 issues the
error message.

Error: unknown parameter on <name> - ignored
This error message will appear when a misspelled or incorrect
parameter is found. The name of the control statement that
contains the bad parameter will appear in the error message.
For example, the line below;

.tran 1n 100ns ons 10ns

will generate the error message

Error: unknown parameter on .tran - ignored

The “o” (supposed to be a zero) is not a valid entry and was
ignored.

Fatal error: DCtrCurv: source <name> not in circuit
This error will appear when the voltage or current source
referenced in a .DC statement does not appear in the circuit
netlist. The string <name> will be replaced with the voltage
source reference designation that can not be found in the circuit
netlist.

Fatal error: <name> : lossy line length must be specified
The “len” parameter in the .MODEL statement for a lossy
transmission line must be specified. The string <name> will be
replaced with the model name of the incorrect transmission line
.MODEL statement.

Fatal error: <name> : <combination> line not supported yet
You have constructed a lossy transmission line using a
combination of R, L, C, and G that is not supported. <name> is
the name of the lossy model and <combination> is the
combination that is not supported.
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Fatal error: <name> : transmission line z0 must be given
This error message is stating that the transmission line has no
characteristic impedance specified. The string <name> will be
replaced with the reference designation of the incomplete
transmission line.

Error:  Scalar port expected, [ found
A scalar connection was expected for a particular port on the
code model, but the symbol that is used to begin a vector
connection list was found.

Error:  Unexpected ]
A ] was found where is was not expected. Most likely caused by
a missing [.

Error:  Unexpected [ - Arrays of arrays not allowed
A [ character was found within an array list already begun with
another [ character.

Error:  Tilde not allowed on analog nodes
The tilde character was found on an analog connection. This
symbol, which performs state inversion, is only allowed on
digital nodes and on User-Defined Nodes only if the node type
definition allows it.

Error:  Not enough ports
An insufficient number of node connections was supplied on
the instance line. Check the Interface Specification File for the
model to determine the required connections and their types.

Error:  Expected node identifier
A special token (e.g. [ ] < >   ...) was found when not expected.

Error:  model: <name> - Array parameter expected - No array
delimiter found

An array (vector) parameter was expected on the .model card,
but enclosing [ ] characters were not found to delimit its values.
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Error:  model: <name> - Unexpected end of model card
The end of the indicated .model line was reached before all
required information was supplied.

Error:  model: <name> - Array parameter must have at least
one value

An array parameter was encountered that had no values.

Error:  model: <name> - Bad boolean value
A bad value was supplied for a Boolean. Value used must be
TRUE, FALSE, T, or F.

Code Model Errors
Code Model core: Magnetic Core

limit_error:
CORE:
This message occurs whenever the input_domain value is an
absolute value and the H coordinate points are spaced too
closely together (overlap of the smoothing regions will occur
unless the H values are redefined).

Code Model d_osc: Digital Oscillator
d_osc_negative_freq_error:
D_OSC: The extrapolated value for frequency has been
found to be negative... Lower frequency level has been
clamped to 0.0 Hz.
Occurs whenever a control voltage is input to a model that
would ordinarily (given the specified control/freq coordinate
points) cause that model to attempt to generate an output
oscillating at zero frequency. In this case, the output will be
clamped to some DC value until the control voltage returns to
more reasonable value.

Code Model d_source: Digital Source
loading_error:
D_SOURCE: source.txt file was not read successfully.
This message occurs whenever the d_source model has
experienced any difficulty in loading the source.txt (or user-
specified) file. This will occur with any of the following problems:
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• Width of a vector line of the source file is incorrect.

• A timepoint value is duplicated or is otherwise not
monotonically increasing.

• One of the output values was not a valid 12-state value (0s,
1s, Us, 0r, 1r, Ur, 0z, 1z, Uz, 0u,1u, Uu).

Code Model d_state: State Machine
loading_error:
D_STATE: state.in file was not read successfully.
The most common cause of this problem is a trailing blank
line in the state.in file
This error occurs when the state.in file (or user-named state
machine input file) has not been read successfully. This is due
to one of the following:

• The counted number of tokens in one of the file’s input lines
does not equal that required to define either a state header
or a continuation line (Note that all comment lines are
ignored, so these will never cause the error to occur).

• An output state value was defined using a symbol that was
invalid (i.e., it was not one of the following: 0s, 1s, Us, 0r,
1r, Ur, 0z, 1z, Uz, 0u, 1u, Uu).

• An input value was defined using a symbol that was invalid
(i.e., it was not one of the following: 0, 1, X, or x).

Code Model d_state: State Machine
index_error:
D_STATE: An error exists in the ordering of states values
in the states->state[] array. This is usually caused by
noncontiguous state definitions in the state.in file
This error is caused by the different state definitions in the input
file being noncontiguous. In general, it will refer to the different
states not being defined uniquely, or being “broken up” in some
fashion within the state.in file.
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Code Model oneshot
oneshot_pw_clamp:
ONESHOT: Extrapolated Pulse-Width Limited to zero
This error indicates that for the current control input, a pulse-
width of less than zero is indicated. The model will consequently
limit the pulse width to zero until the control input returns to a
more reasonable value.

Code Model pwl
limit_error:
PWL:
This error message indicates that the pwl model has an
absolute value for its input_domain, and that the x_array
coordinates are so close together that the required smoothing
regions would overlap. To fix the problem, you can either
spread the x_array coordinates out or make the input_domain
value smaller.

Code Model s_xfer
num_size_error:
S_XFER: Numerator coefficient array size greater than
denominator coefficient array size.
This error message indicates that the order of the numerator
polynomial specified is greater than that of the denominator.
For the s_xfer model, the orders of numerator and denominator
polynomials must be equal, or the order of the denominator
polynomial must be greater than that of the numerator.

Code Model sine, square, or triangle
Source_name: Extrapolated frequency limited to 1e-16 Hz
This error occurs whenever the controlling input value is such
that the output frequency ordinarily would be set to a negative
value. Consequently, the output frequency has been clamped
to a near-zero value.
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Warnings

Warning: .options card unsupported
This is caused by an obsolete or misspelled parameter in the
.OPTIONS statement.

Warning: .TEMP card obsolete - use .options TEMP and TNOM
The .TEMP card supported by SPICE2 simulators is not
supported by IsSpice4. The circuit temperature is set using the
.OPTIONS TEMP parameter. The temperature at which the
model parameters were calculated at, TNOM, is also set in the
.OPTIONS statement. See Chapter 10 for the correct syntax.

Warning: <name> : no DC value, transient time 0 used
This message notifies you that the voltage source referenced
by the string <name> has no DC voltage value for an initial DC
operating point calculation. This is acceptable because IsSpice4
will use the initial transient voltage, or if no transient statement
exists, a value of 0, when determining the initial DC operating
point.

Warning: can’t parse <name> : ignored
This warning is caused by a typographical error in the input
circuit netlist. Check the netlist for correct syntax. The string,
<name>, will display the character string that was not read into
the IsSpice4 program properly.

Warning: device already exists, existing one being used
This is caused by a duplicate reference designation. For
example, the existence of two resistor statements beginning
with “R1”. IsSpice4 will use the only one of the elements. Check
the netlist and make sure each reference designation is unique.

Warning: singular matrix: check node <name> and <name2>
This warning can be caused by a node that is not connected to
anything. Check the netlist for dangling nodes. The string
<name>, and <name2> will be replaced by the node numbers
creating the singularity.
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Warning: Gmin stepping failed
This warning will occur if a stable DC operating point can not be
found. The Gmin stepping algorithm in automatically invoked if
the a DC operating point can not be found within ITL1 Newton-
Raphson iterations. If Gmin stepping fails, the source stepping
algorithm is invoked. This error can also occur if the element
connections are not correct. See the warning, “singular matrix:”

Warning: source stepping filed.
This warning message is similar to the one given for Gmin
stepping. If a DC operating point can not be found after running
the Gmin and source stepping algorithms, IsSpice4 will abort
the analysis. At this point you should check the circuit
connections for validity and increase the ITL1 value in the
.OPTIONS statement before rerunning the simulation.

Warning: time step to small
This warning is caused by the simulator's inability to find a
stable answer. Most often this is due to unrealistic circuit
modeling or impedances. At this point you should check to see
that all of the device models have junction capacitance added,
increase the ITL4 value in the .OPTIONS statement, and set
RELTOL, also in the .OPTIONS statement, to .01 before
rerunning the simulation.

Warning: too few nodes: <name>
This warning is caused by incorrect syntax. Check the input
circuit netlist. The string, <name>, will contain the character
string that has too few nodes. Search for the string in the input
netlist and correct any mistakes.

Warning: Singular matrix Trying alternate initialization
Occurs during a solution of initial conditions when using the UIC
parameter on the .TRAN line. This error means that inaccurate
initial conditions are carrying infinite current. (i.e., parallel
capacitors with different initial conditions) The resulting
initialization will not be the exact value specified.
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Appendix D: Adding a SPICE Model
Importing SPICE model with Library Manager
Adding a SPICE model to ICAP/4’s Part Browser is easy using
Library Manager. It automatically adds the appropriate *SRC=
and *SYM= lines to the Spice model netlist. Start ICAPS and
then choose Import Spice Model… under the File menu. This
brings up a dialog that allows you to import spice model netlist
from the clipboard or a text file.

If the text file contains only one device model, then just import
the model “From File.” If you have multiple Spice models in the
text file, then each model must be imported one at a time.
Library Manager will treat any text read-in as a complete model,
so only highlight the specific model, copy to clipboard (<Ctrl>+C),
and import model “From Clipboard.”

• Open up the text file or view webpage with model text.
• Highlight everything from .subckt line to the .ends line of one

specific model you want to add, and then copy selected text
to the clipboard.

• Press the “From Clipboard” button to import model based
only on what is currently stored on the clipboard.

If the model name already exists in your part database, Library
Manager will replace your existing model netlist with the text on
your clipboard. You will see a text difference between existing
and imported spice model netlist. If you don’t want the existing
model in the part database replaced with your imported model,
then exit Library Manager without saving changes, and re-
import the model with a modified model name on the .subckt
line.

Note: Comment
lines start with *.
ICAP/4 software
uses 5 asterisks
as Spice model
netlists delimiter.
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Save New Model
The New Model dialog will
only come to view if the model
name on the .subckt line does
NOT already exist in the part
database. The unique model
name will be shown in the
bottom right field under “Enter
the new model name.”

Make sure that you save the model to a library file that is NOT
included with our installation. If you save to an existing library
that Intusoft provides, then it will be overwritten when you install
an ICAP/4 product update. All current library files in the part
database are shown in the list on the left of the New Model
dialog. To save to a new library file, type a unique library name,
then press the OK button. You can select an existing library file
and keep on adding new models to the same library file. Just
make sure that this file is not one of Intusoft’s provided library
files. An example of a safe library file you could save your
models to is “User.lib.” This file is not included in the installation
and is the default file for imported models.

Define Where to Find Model in Part Browser
Notice that *SRC= and *SYM= have been added to the top of your
imported model. These lines link to our Part Browser and symbol.

The *SRC= line contains the information used by SpiceNet's Part
Browser for part selection. It will be given the above default text
except for where you see MYPART. This text is based on the
model name assigned on the .subckt line. 03pin is based on the
number of nodes on the .subckt line.
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You can modify the text shown in the Part Browser by using the
Edit Fields buttons. Each Edit Field is separated by a semicolon.
There MUST be four semicolons on the *SRC= line.

*SRC=Part Number;SubCkt;Part Type;Sub Type;Notes

Note: The length of the Part Number and Notes field combined
should be no longer than 30 characters. The Part Type and Sub
Type each should be no longer than 13 characters. The SubCkt
field MUST be unique and match the model name on the
.subckt line below. Spaces or !@#$%^&* characters are NOT
allowed for the SubCkt field.

After you are done modifying the source line *SRC= and
symbol line *SYM=, you MUST save your changes and update
the part database.
Validating That Your Part Was Added

Bring to view your imported model in the part browser to make
sure everything is working properly. This step validates that
your *SRC= and *SYM= lines were correct.
• Start ICAPS.
• Select Part Browser from the Part menu or type “x” on the keyboard.
• Click “Find” button and search for your part.

S y m b o l
Preview

Click to
Edit
Symbol

Part
Type

Sub
Types

Part
Number Notes

Symbol
name

Library
File

Note: SymLib and
ModLib  at the bottom
of the Part Browser
dialog reveals the
location of the part
symbol and netlist.
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Use Existing Symbol
The symbol name is shown on the SymLib line after the
compound symbol file, which ends with .sym extension. If you
want to use an existing symbol then select a similar part with the
correct pins. Click the "Edit Symbol" button on the Part Browser
to open the Symbol Editor and make sure the pin order matches
the order of pins on the .subckt line of your added model. If it
does, then click “Edit Model” button in the Part Browser to bring
up Library Manager. Then, click on the “Symbol” button and
type the symbol name.

Example: We imported a PNP Power MOSFET model. Notice
that in the Parts Browser for existing PNP Power MOSFETs,
they use a powmosp symbol in the device.sym compound
symbol file. If the edit symbol button is clicked, pin1 is on drain,
pin2 is on the gate, and pin3 is on the source. This is the desired
symbol, so the symbol name powmosp can be used for the
*SYM= line. If the pins didn’t match, one can either reorder the
nodes on the subckt line or modify the pins on the symbol.

.SUBCKT MYPART 30 40 50
* NODES: DRAIN GATE SOURCE

#1 #3 #2 PIN ORDER
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Create New Symbol or Modify Existing Symbol
You can create a new symbol or modify an existing symbol. Just
make sure that it is NOT saved in an Intusoft provided compound
symbol file. If you do, the file will be overwritten when you update
or reinstall the software. Many models link to the same symbol.
Remember to check the pin order and number of pins.

• Choose Save copy as… from the File menu in Symbol Editor.
• Enter the compound symbol file name you want to save your

new symbol to, and press the Open button.
• Now type your symbol name and press OK.

If you saved this symbol to a new compound symbol file, then
you need to edit the Sym.@@@ file located in the Spice8\SN
directory.

For example, you would add the line
..\sn\mysym\MYSYMFILE.SYM to the SYM.@@@ file as
shown below if your compound symbol file name was
MYSYMFILE.SYM. Note: The existing paths are relative but
you can specify an absolute path if you want.

This is the symbol name
you specify on the *SYM=
line. Spaces or any of the
characters !@#$%^&* in the
name are NOT allowed.

..\sn

..\sn\symbols

..\sn\symbols\device.SYM

..\sn\symbols\digital.SYM

..\sn\symbols\lin-ic.SYM

..\sn\symbols\special.SYM

..\sn\symbols\system.SYM

..\sn\symbols\ttl74xx.SYM

..\sn\mysym\MYSYMFILE.SYM

You can save all your new
symbols in one compound
symbol file so you don't have to
repeat the above step each time.



414

Create a Folder to Contain Your Own Models
If you want to separate your libraries from the libraries provided
by Intusoft, you must modify the LIB.@@@ file located in the
Spice8\SN directory.

For example, you would add the line C:\MYLIB to the LIB.@@@
file as shown below, if your model library file was placed in the
C:\MYLIB directory. Only .LIB files in the specified directories
will be added to the part database.

..\pr
C:\MYLIB

Eliminating Duplicate Parts Errors
To compile the new part database, Start ICAPS, select the
Update Part Database… from SpiceNet File menu, or by
selecting MakeDB in ICAP_4 program group. You must resolve
all duplicate part errors in the libraries after MakeDB is done
compiling.
Compiling User.LIB
-- Warning: Duplicate .MODEL or .SUBCKT name MYPART in POWMOS.LIB

In order to correct this use IsEd to find and modify one of the
duplicate subckt part names. If you find a large number of
duplicate parts within a single library, you can change the .LIB
extension to .LBK so MakeDB will ignore it.

What MakeDB does in more detail
To access parts from the Part Browser dialog, SpiceNet must
be able to access two database files, dbase.@@@ and
index.@@@. The source files from which these two files are
created, and the utility program (MakeDB.exe) used to update
the database files, are located in the C:\spice8\sn directory.
Editing of the source files and recompilation of the database
files is necessary if you want to:

• Add your own IsSpice4 models or subcircuits to SpiceNet to
be able to place them with the Part Browser.

• Add a new symbol to represent a new or existing subcircuit.
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The files that tell MakeDB.exe which libraries and symbols to
compile into the part database are:

• Lib.@@@ This file contains the path(s) to the library directories
to be included in the index.@@@ file. All files with a .LIB
extension in the directories listed (NOT subdirectories) will be
compiled. By default this contains only ..\PR. Relative path is
taken to be relative to MakeDB.exe. Explicit path is used as is.

• Sym.@@@ This file contains a list of all of the compound
symbol files to be used when compiling the SpiceNet database.
The first entry must be "..\SN.” Each remaining entry is a
compound symbol file. The compound symbol file must have
a .SYM extension. Any entry using an implicit path is
considered relative to MakeDB.exe. Any entry using an
explicit path is used as is.

The following entities are created after compiling the symbol/
library database:

• dbase.@@@ This is a compiled database file made from
*SRC lines in the library files. The information in this file is
used by SpiceNet’s Part Browser dialog and component
placement by part number.

• index.@@@ This is a compiled index file containing the
name of every model and subcircuit, the library file containing
the model/subcircuit, and its corresponding SpiceNet symbol
(*SYM).
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Appendix E: Export Schematic of Model as Subckt
Make Configuration For Export
Prepare a circuit configuration with only the circuitry that you
want to include in the subcircuit. This will most likely require that
you remove any test circuitry or stimulus sources. Along this
line, be sure to attach wires, test points or continuation symbols
on any nodes that are unconnected. In this way, unconnected
parts will have their pins resolved with node numbers or names.

Let’s cover the basic steps to accomplish this task. We will start
with a set of circuitry that is on one layer in one configuration in
SpiceNet. We'll then split the circuitry into two parts: one part,
which is not needed for the subckt export, will be on a layer
called "Test Circuitry." The second, which contains the circuitry
destined for subckt export, will be on a second layer called
"Circuit Under Test." Then we'll create two configurations
called, "For Simulation" and "For Export." The "For Simulation"
configuration will contain both layers. The "For Export"
configuration will only contain the "Circuit Under Test" layer.
Note that items on a layer that is unique to a configuration, will
not affect other configurations.

To create a new circuit configuration that uses a portion of your
existing circuitry

• Select Options > Layers...

• Click the Rename… button and type "Circuit Under Test.”
Select OK.

• Click the New… button to create a new layer. Name the new
layer "Test Circuitry.” Select OK.

• Select OK to close the Layers dialog. All of the circuitry is now
on the “Circuit Under Test” layer. We can see this by pressing
the eye icon at the bottom left of the schematic windows next
to the layers drop-down list. Only parts on the selected layer
should be highlighted.

• Select ONLY the circuitry that you do NOT want represented
in your exported subckt. Remove all test circuitry and stimulus
sources by holding down the <Shift> key, and select each
component that you want to exclude.
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• Right mouse click and choose Move Item to Layer > “Test
Circuitry” to transfer all selected components to the “Test
Circuitry” layer.

• Config 1 now has the circuitry split on two layers. We can
confirm this by selecting the “Test Circuitry” layer in the drop-
down list at the lower left corner of the schematic, and then
pressing the eye icon next to the list.

• Select Options > Configuration > Edit…

• Click the Edit… button and rename "Config 1" to "For
Simulation.” Select OK.

• Click the New… button and create a new configuration. Call
it "For Export.”

• Remove (deselect) the newly created layer ("Test Circuitry")
from the configuration. Select OK.

• Select OK again to close the dialog.

• Change between the two configurations by using the toolbar
configuration dropdown (left). Notice the differences. The
layers available in the dropdown list at the lower left corner of
the schematic are based on which layers are in the selected
configuration.

Note: In order to account for unconnected parts, whose
connections are via parts on layers that are not active in this
configuration, you MUST attach a wire, test point or continuation
symbol(s) to the unconnected pins. Every pin on every part
must have a node number or name. Pins on the ends of
dangling wires are OK.

Define Subckt Parameters
If you use parameters text block to define global parameters,
then you need to manually copy and paste your parameters to
the “For Export” configuration. Global parameters will become
your exported subckt parameters. The Parameters text block
takes all parameters listed in a schematic text block if it starts
with the keyword “parameters,” and moves them to the selected
configuration global parameters list when you simulate.
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• Select Actions > Simulation Setup > Parameters Setup…

• Copy and paste parameters from “For Simulation” to “For
Export” configuration

• Define default parameters or use three question marks (???)
if you want user to define passed parameters

Before exporting this configuration, you need to make a
subdrawing to define the subckt nodes.

• Select Subdrawings > Make Subdrawing…

• The Subdrawing name is the same name as the current
configuration. You may change it in the Subdrawing Name:
field.

• Click on the node from the list of nodes on the left, that you
want to expose from inside the subcircuit (external connection,
and that will be on the .SUBCKT line)

• Click the Add button to add the selected node to the list of
subcircuit pins. Repeat this operation for each node you want
to expose.

• You may arrange the node order using the Move Up/Move
Down buttons. You can also assign the pins to be hidden. You
will then be able to make connections to the hidden pins by
using a continuation symbol with the same name as the
hidden pin. The hidden pin name is assigned inside of the
part’s Properties dialog.

• Select your symbol. “Use Wizard to Create Symbol…” enables
you to specify pin arrangement and names. "Use Default
Symbol" is just a rectangle with the number of pins you
expose. If you choose “Get Symbol From Library,” you need
to select an existing symbol.

Wizard Note: If you use the Wizard option you MUST save the
symbol you make in a compound symbol library file before
selecting the Finish Subdrawing button at the bottom of the
Symbol Editor screen. This requires you to enter a symbol file
name, plus a name for the individual symbol. If the compound
symbol file is new, then you must specify the path and symbol
file name in SYM.@@@ before you run MakeDB. Remember
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the symbol name, and NOT the compound symbol file name.
You will need to add this symbol name to the *SYM= line in the
subcircuit netlist you generate.

Exporting the Subcircuit Netlist
• Select File > Export…

• Select the SubCkt option from the drop-down list. Select OK.

The subckt part will be added to SPICE8\PR\USER.LIB. Make
sure the appended model is not a duplicate model. Modify the
*SRC= and *SYM= line so the part is placed in the Part Browser
where you desire, and uses the symbol you want. If you have
Library Manager, you will be able to specify any library file you
desire, and your modifications to the *SRC= and *SYM= line will
NOT be overwritten every time you reexport.

Make Your Exported Subckt Model Easier to Use
After you export your subckt model, you will want to add a few
modifications to make it easier for other people to use.

• Modify the *SRC= line so you can easily find it in the Part
Browser. See Appendix D on how to modify this line.

• Modify the *SYM= line so you are using an easily recognizable
symbol. See Appendix D on how to modify this line.

• Add comment lines explaining passed parameters and their
units. If a line starts with one asterisk it is considered a
comment line. Be careful. Models are separated by a row of
at least five asterisks, “*****”. If you add rows of asterisks to
separate sections of your model, or create a box out of
asterisks, then you will be inadvertently cutting your model
into pieces.

• Link your subckt model to the schematic you exported it
from.. In Library Manager you can press the “DWG Ref”
button to browse for your schematic file and add the proper
*DWG line. At any time you can bring this up in Library
Manager and press the “Test” button to launch your reference
schematic. Note: Schematics can’t be launched in SpiceNet
if the part browser is open.

The format is: *DWG=Path\Filename
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• Create .RTF (Rich Text Format) Help on how to use your
subckt model. The Property Help button in the X… Parts
Browser dialog, and in each Part Properties dialog, brings up
the referenced help. Click on the “Help Ref” button to safely
create your own RTF help for your added model.

The format is: *HELP=pr\<library>\<model>.RTF

• Add *FAMILY line to enable auto-bridging for non-analog
pins, or to make hidden pins available. If a subcircuit has no
*FAMILY line, SpiceNet will assume that all pins are analog
and no bridging will occur. The names used for this line are
symbolic names that represent bridging components that will
be used when the part is connected in SpiceNet. If a subcircuit
that uses a combination of analog and digital connections is
constructed, the *FAMILY line is used to make sure that each
connection point is properly translated.

Note: The *FAMILY line is located inside the subcircuit
definition (after the .subckt line and before the row of asterisks
marking the end of the subcircuit). This is a requirement of the
*FAMILY line.

The following *FAMILY terms are predefined. You can control
these levels by selecting Options > Mixed Signal Properties…
in SpiceNet.

"Dout" - generic bridge using TTL levels
"Din" - generic bridge using TTL levels
"TTLout" - TTL bridge using TTL levels
"TTLin" - TTL bridge using TTL levels
"ECLout" - ECL bridge using ECL levels
"ECLin" -  ECL bridge using ECL levels
"Rout" - Real bridge using R2A bridge
"Rin" - Real bridge using A2R bridge

Hidden Pins Using *FAMILY

The *FAMILY line can also be used to expose a node inside
the subcircuit. This is useful for probing and examining
voltage values inside the subcircuit from the top level displayed
in SpiceNet. To expose a node nested in a subcircuit, add an
additional family name at the end of the list preceded by a
pound symbol (#).
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For example:
.SUBCKT LM714 1 2 3 4 5 10
*FAMILY ANALOG ANALOG ANALOG ANALOG ANALOG #ANALOG

This example shows the five subcircuit connections. The last
#ANALOG will cause a sixth editable node to be exposed
inside SpiceNet from the properties dialog of the LM741. In
the part’s properties dialog you will be able to assign a node
name to the exposed node, and thus connect it to any other
place in the circuit that has the same node name.

• Add *PINOUT Line for PCB export.
The format for a *PINOUT line in a library file is:

*PINOUT package_name pin_number pin_number ; pin_number
pin_number: uncommitted pins

The package_name is separated by spaces from the *PINOUT
and the pin list. Each pin_number in a pin list is separated by
a space. If there is more than one component in the package,
the second sequence of numbers follows the first, separated
by a semicolon. The pin_numbers in a pin list represent the
actual pin numbers used by the manufacturer. The order that
the pin numbers appear must match the order of the connection
on the .subckt line or, in the case of primitive parts, the order
that IsSpice4 expects.

An Example for a National Instruments AD822:
*pinout SOIC 3 2 8 4 1;5 6 8 4 7
*pinout Cerdip 3 2 8 4 1;5 6 8 4 7

If the package has pins that are not represented on the
subcircuit, any symbolic name can be given on the *Pinout
line, along with the pin number. Place all such pin descriptions
at the end of the line following a colon.  The name will appear
in the Footprint Pins Assignment dialog. These pins can be
renamed in the Port column. However, hidden pins can’t be
added in within this dialog. Users first have to modify the
*pinout line in .lib files to get the hidden pins shown for renaming.
The following is an example of a LS04 digital inverter that has
uncommitted pins, no VCC, and GND connections for
simulation:

.SUBCKT LS04 1 2
*pinout W 1 2;3 4;5 6;9 8;11 10;13 12:VCC=14 GND=7
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Symbols

!, ICL  360
# directives  370
%  360
%v  75
%vd  75
&  176
*  70
*#  357
*DWG  419
*FAMILY  420
*HELP  420
*PINOUT  421
*SRC  411
*SYM  413
+  70, 351
->  309
.  62
.AC, syntax  323
.CKT, errors  85
.control  61, 338, 355
.DC  31
.DISTO

syntax  326
.END  61

simple example  71
.endc  61, 338, 355
.ENDS  68, 220
.ERR  4, 13, 73
.FOUR, syntax  334
.IC, syntax  333
.MODEL  99, 181

capacitor  138
definition  183
description  60, 67
example  98
LTRA, losy T-line  144, 145
resistor  137
sw/csw, switch  151, 153
URC, T-line  149

.NODESET

syntax  322
.NOISE

syntax  324
.OP  30

syntax  319, 320, 321
.OPTIONS  43

BADMOS3  200
LIST  72
syntax  341
TEMP  171

.OUT  72

.PARAM  81, 84, 89
syntax  83

.PLOT  60, 62
syntax  339

.PRINT  13, 18, 60, 62
control block  374
current  63, 157
data  72
digital  56
DISTO  328
node names  65, 337
subcircuit data  69, 338
syntax  335
vector generation  358
voltage difference  70, 335

.PZ, syntax  331

.SCP  44, 45

.SUBCKT  68, 99
syntax  219

.TEMP  407

.TF  31
syntax  322

.TRAN
syntax  332

.VIEW  13, 18, 60, 63
default scaling  340
syntax  339

:  179
;  70
<  360
<=  360
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<>  360
=  360, 361
>  360
>=  360
?  13, 179
???  85, 91
@  63, 338, 358
@device[keyword]  398
[ ]  136
|  176

ICL  360
~  77, 176, 403
0  66
0, low  49
1, high  49

A

A-D Converter circuit  180
A-to-D  54
a_to_r2  273
ABM  164, 168
abort  16
About IsSpice4  1
ABS  146
abs  168
abs(arg)  362
absolute value tolerance  108
ABSTOL  38, 341
AC

RSS, EVA, Worst Case  45
ac  365
AC analysis  29, 30, 33

code models  230
frequency  171
input  156

ACCT  348
Accumulate Plots  14, 20
accuracy  39
active analysis  16
AD  197
adc_bridge  266, 269
Advanced Settings dialog  116

alias  324, 337, 357, 366, 373
vector  364

alias*  363
aliasing  38
all  18
allcur  18
Allowed_Types  222
allpow  18
alter  24, 357, 367
alternate initialization  408
alternating current  155
alterparam  367
ALTINIT  342, 397
Always button  25
Anadigics Corp.  193
analog

code models  30, 221, 225
elements  266
ground  66
signal translation  54

Analog Behavioral Modeling  164
analog to real  273
analysis

AC  33
AC syntax  323
code models  30
Control  59
control loops  368
control statements  60, 62
DC Operating Point  30
DC sweep  31
DC transfer function  31
Distortion  35
Distortion syntax  326
Fourier  42, 43, 334
frequency mixing  34
from ICL, example  336
harmonic  326
ICL temperature simulation  375
initial conditions  333
list of types  29
model description  67
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Monte Carlo  103, 112
multiple  376
Noise  34
Noise syntax  324
Operating Point  319, 320, 321
Optimization  103
output control  62
Parameter Sweeping  103
past data  20
Pole-Zero  36
Pole-Zero syntax  331
Sensitivity  32, 329

example  336
simulation options  341
spectral  327
temperature  43, 350
transfer function syntax  322
Transient  36
Transient Initial Conditions  37
Transient syntax  332

Analysis Commands  365
analysis statements

passed parameters  84
and  176, 284

ICL  360
area factor  182
array errors  403
artifacts, numerical  41
AS  197
askvalues  371
assertvalid  371
asynchronous  295, 301
atan(arg)  363
Auto button  17
autopartial  346
average  363

B

B element  47, 164, 378
flip-flop  177
If-Then-Else  179

example  180

in-line equations  167
node names  66
timestep control  178

BADMOS3  200, 347
Batch radio button  117
behavioral element expressions  83
behavioral expressions

capacitors  140
inductors  141
lossy lines  144
resistors  136

behavioral functions  168
behavioral modeling  5, 164
behavioral Modeling Issues  172
behavioral models

Laplace  249
table  244

Bipolar Junction Transistor  186
model parameters  187, 188, 189

Bode plot  29, 155
boolean  176, 404

functions  178
logic expressions  47

branch currents  170, 173
break  368
breakpoints  356, 361, 373

d-to-a  55
multiple  376

bridge  54, 56, 266
A-to-D  269
A-to-R  273
D-to-A  267
D-to-R  271
R-to-A  272

BSIM 1  5, 198, 202
BSIM 2  198
BSIM3

parameters  209
BSIM3v2  198
BSIM3v3.1  198
BSIM4  4
buffer  282
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BYPASS  347

C

capacitive loading  267, 281
capacitor  138

expressions  138
model parameters  139
nonlinear  175
polynomial  139
sigmoidal  175

cases  116
CCCS  165
CCVS  166
CEIL  169
ceil  362
characteristic impedance  143
charge conserving  232
Chebyshev  250
CHGTOL  38, 152, 342
circuit

connections  65
description, example  71
simulation  47
subcircuit access  69
temperature  171, 346, 376
topology  64

Circuit Optimization  104
clipboard  19
cntl_freq array  254
cntl_pw_array  242
code model

adc_bridge  269
analyses  30
and  284
buffer  282
call line  74
core  226
d flip flop  295
d latch  303
definition  74
differentiator  230, 232
digital oscillator  275

digital source  316
digital to real bridge  271
error messages  403
frequency divider  311
hysteresis block  236
inductive coupling  238
inverter  283
jk flip flop  297
limiter  240
MIDI  318
nand  285
netlist requirements  64
nor  287
oneshot  242
open collector  293
open emitter  294
or  286
parameter table  224
pulldown  292
pullup  291
RAM  313
real  279
real delay  279
real gain  280
real to analog bridge  272
s-domain transfer function  249
sine  254
slew  252
square  256
sr flip flop  301
sr latch  305
state machine  57
syntax  74, 221
table model  244
toggle flip flop  299
triangle  258
tristate  290
types  30
xnor  289
xor  288

code models
search scheme  262
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comma  3, 70
ICL  360

Command button  15
comment  70

digital source  316
state machine  309

COMPACTABS  145, 147
COMPACTREL  145, 147
comparator  180
component  60

scaling values  66
Configuration For Export  416
connecting digital elements  55
connection  65

code models  74
port  223

continuation line  70, 351
state machine  309

continue  368
control

block  355, 374
example  377

loops  356, 361, 368
statements  62, 71

control block  357, 373
Control Loop Commands  368
controlled digital pulse width

modulator  266
controlled digital PWM  277
convergence

DC  322, 343
definition  379
error messages/Indications  383
problems/solutions  379
solutions to DC  384
SPICE 3 helpers  397
transient  345
transient solutions  389

Copy button  19
copytodoc  371
core  225, 226

error message  404

cos(arg)  363
counter

example  308
coupled

inductor  142
transmission lines  147

coupling coefficient  142
cross-probing  20, 358
csdf  364
CtrlVec  24
CUR  36
curly braces  86
current

meter  155
real time display  18

current controlled current sources  165
current controlled switch  150
current flow  141, 156, 162
current measurement  63
current plot  364
current source

dependent  164
functions  164
independent  162
voltage controlled  165

Cursor Control Commands  369
cursor relative functions  363
Cursor Wizard  115
cursors  378
Curtis-Ettenburg Model  196
curve family  376

D

D  67
d flip flop  295
d latch  303
D-to-A  54
d_and  284
d_buffer  282
d_dff  295
d_dlatch  303
d_dt  225, 230
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d_fdiv  311
d_inverter  283
d_jkff  297
d_nand  285
d_open_c  293
d_open_e  294
d_or  286, 287
d_osc  266, 275

error message  404
d_pulldown  292
d_pullup  291
D_pwm  266
d_pwm  277
d_ram  313
d_source  316

error message  404
d_srff  301
d_srlatch  305
d_state  307

error message  405
d_tff  299
d_to_real  266, 271
d_xnor  289
d_xor  288
D2A symbol  56
dac_bridge  266, 267
data

aliasing  38
availability  366
available vectors  366
delayed, TSTART  13
device/model  365
distortion  328
fourier  334
generating output  335
ICL function  359
ICL print  336
ICL vectors  358
interpolation  366
linearization  366
Monte Carlo

format  117, 120

Noise  325
Optimization format  119
output file  72
output raw  365
output statements  60
output syntax  335
Pole-Zero  330, 331
saving past plots  20
sendplot  365
tabular output  73
transient  333
vector commands  366
viewing data  339

data reduction  130
Data_Type

parameter table  224
db(arg)  362
DC  365

RSS, EVA, Worst Case  45
DC analysis

convergence erorrs  383
convergence solutions  384
input  156
operating point  30
sweep  31
sweep convergence solutions  389

DCtrCurv: source  402
decibels  362
DEFAD  197, 348
DEFAS  197, 348
default

input type  74
port type  75
subcircuit parameters  90

Default_Type
port table  222

Default_Value
parameter table  224

DEFINE  79, 80, 94
example  96
explanation  80
rules and limitations  95
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syntax  94
DEFL  197, 348
DEFW  197, 348
degree, laplace  249
delay  51

current source  162
digital  281
SFFM source  161
voltage source  155

delete  366
delimiters  70
denorm_freq  250
denormalization  250
dependent source  4, 164, 165

nonlinear  167
deriv,  362
derivative  225, 230
Description

parameter table  224
port table  222

destroy  366
destroyvec  371
device

connection  65
currents  167
modeling  59
tolerance  108
types  60, 64

device/model parameters  321, 365
@  358
availability  398
display  18
ICL output  356

DFT  43
dialog

Expression  23
Interactive Stimulus  21, 24
Plots pop-up  14
Select Measurement Parameters

14, 19
Simulation Control  14
Stimulus Control  19

Stimulus Picker  14
Waveform Scaling  17

diff  366
diff¨  363
differential

connections  76
node  74
port  75

differentiate (arg)  362
differentiator  230, 232
digital

.OPTIONS  176
code models  221
elements  266
event translation  54
getting output  62
ground  66
nodes  77, 281
ONE  291
oscillator  56, 275
oscillator, error message  404
output  56
output strength  281
simulation  49

events  50
implementation  53

source  50, 316
source, error message  404
stimulus  56
time-delay  282
to analog bridge  267
to real bridge  271
values  50
ZERO  292

digital gates  164
feedback  177
timestep control  178

Diode  184
model parameters  185

Direction, port table  222
directory, digital source  316
discontinuity  200
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display  363, 366
available vectors  18
ICL view  365
model/device paramerters  18
real time  338
real time OPTIONS  340
real time scaling  340
real time syntax  339
window  13
window position  15

DISTO  29
disto  365
Distortion analysis  29, 35, 326

code models  30
input  157

divider, frequency  311
DoScript button  26
dot  62
dowhile  368
DSRC symbol  57
DtoA  52
duty cycle  275
DWG Ref  419

E

earth  66
echo  367
Edit:  27
element description  59, 60
element properties

parameters  84
Eliminating Duplicate Parts Errors  414
else  368
endpoints  245
entering numbers  66
EPLF-EKV MOSFET model  4
eq  360
equations  5
error

?  13
checking  4
code models  403

digital source  317
error file  73
message display  13
messages  73, 399
messages for convergence  383
Monte Carlo  123
parameter passing  85
window  13

errorstops  369
Esc key  13
EVA  32, 44

output  73
EVA, extreme value analysis  127
event  48, 49, 50

a-to-d  55
event-driven

algorithm  48
code models  30
elements  266
node types  30
nodes  53

example
counter  308
null  77
passed parameters  89, 91
port modifiers  76
state machine  57, 308
table model  76

EXP  160
exp(arg)  362
expl  168
exponential  168
Exponential With Limits  173
Exporting Subcircuit Netlist  419
Expression button  14, 23
Expression dialog  23
expressions  64, 138

B element  164
branch currents  170
ICL  360
inductors  167
lossy line  144
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parameters  81
EXPSW  154
extensions

.ERR  4, 13

F

F  66, 143
fall time  52, 363
falling delays  281
FD SOI MOSFET  232
feedback

digital gates  177
fermi probability switch  154
fftinit  365
file

digital source  316
loading error  309
state machine input  308

filetype  367
filter  365
finalvalue  363
flip-flop  177

d  295
jk  297
sr  301
t  299

floating inputs  281
FLOOR  169
floor  362
flux density  226
foreach  368
format

digital source  316
state machine  57, 308

FOUR  29
fourgridsize  367
fourier  365
Fourier analysis  42, 334, 367
FRAC  169
fraction  240, 245
FREQ  171, 358
freqtotime  365, 366

frequency
dependence  144
divider  311
domain  249
expressions  167
gain block  170
mixing  34
modulation  161
response  155

fully-depleted MOSFET  216
function  366

definition  359
ICL  359
ICL examples  360

functionundef  366

G

G  66
GaAs

Field Effect Transistors  192
MESFET  5

GaAs MESFET
model parameters  194

gain, real code model  280
gate delays  51
gaussian  112
ge  360
gear  38, 41, 333, 344
generating output  62, 335
generator

controlled oneshot  242
digital  56, 316
digital source  316
MIDI oscillator  318
sine wave  254
square wave  256
triangle wave  258

Gertzberrg  149
getcursorx  363
getcursory  363
getcursory1  363
getparam  369
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global parameters  86
glued mode  48
GMIN  342

stepping failed  408
steps  397

goto  368
graphics resolution  13
ground  66

digital  66
gt  360
Gummel-Poon  187

H

hand tweak  23
harmonic

analysis  326
distortion  29, 42, 328
frequencies  328

harmonics  378
HB_array  226
header line  309
help  15, 27
HEMT Model  193
HI_IMPEDANCE  49, 293
Hidden Pins  420
high state  49, 291
Hodges  191
homecursors  115, 369
hybrid  54

code models  221
digital oscillator  275
elements  266
model  30
real delay  279

hyst  225, 236
hysteresis  150, 225

block  236
mode  226
model  227

I

IC=  37, 177
ICAP/4Rx  29
ICAPS

environment variable  262
ICAPSDir  262
ICL  29, 355

control block  61, 71
display control  13
expressions  360
function examples  360
functions  59, 359
logical operations  360
order dependancy  355, 357
output control  355
relational operations  360
script introduction  26, 28
scripts and sweeps  25
simulation output  356
structure  60
variables  361
vectors  358

ICL script  45
ICL Scripts  44
ICL scripts  124

measurements  113
ICL statements

*#  357
ICSTEP  342
Ideal Transmission Line  143
If-Then-Else  83, 164, 179

examples  180
ICL  361
ICL function  368

If-Then-Else expression
inductors  141

if¨  368
IMAG  169
imag(arg)  362
imaginary  335
impedance  260
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Importing SPICE model  409
in-line comment  70
in-line equations  83, 167
in_high  54
in_low  54
INCLUDE  79, 80, 97

example  98
explanation  80
rules and limitations  99

include  370
independent current sources  162
independent sources

passed parameters  84
Independent Voltage Source  155
indexing a vector  358
inductive coupling  225, 238

core connection  226
inductor  141

coupled  142
nonlinear  175
polynomial  141

initial
count  311
node voltages  322
phase  275
simulation  12

initial conditions  177, 333
transient  37

initialization, digital nodes  281
initialvalue  363
INOISE  325
input

AC, current  163
alternating currrent  157
current  162
distortion, current  163
exponential  160
functions  164
PWL  160
SFFM  161
transient, current  163

input load  267, 281

input_domain  245
input_file  262

digital source  316
state machine  307

INT  169
integer nodes  53
integration  38, 41, 230, 333
inter-process communication  369
Interactive

Command Language
26, 30, 355, 357

measurements  18
Stimulus dialog  21, 24
sweeping  21

interconnect  147
interface, analog/digital  54
intermodulation  326

distortion  29
interpolate  363
interpolation  39
INTERPORDER  39, 348
IntuScope

data from sendplot  26
sendplot  365

Intusoft Newsletters  379
inversion  77
inverter  283
IS@@@  262
ISCALE  17, 340, 348
isdef  364
IsEd  316
ISPERL  149
IsSpice4

algorithms  30
netlist  355
preprocessing  79
quitting  12
screen display  12
Simulation control dialog

passed parameters  87
starting  11
window display  16
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ITL1  343
ITL2  343
ITL4  343
ITL5  349
ITL6  343

J

j(arg)  362
JFET  6, 190

model parameters  191
model types  191

jk flip flop  297

K

K  66
KAPPA parameter  200

L

L  197
label  368
laplace  230, 249

error message  406
latch

d  303
sr  305

Launch Spice icon  11
lcouple  225, 238
le  360
LEN  145
length to small to interpolate  399
length(vector)  364
let  357, 366

vector generation  358
Level 8

parameters  209
level-sensitive  303, 305
Libraries (Personal) Folder  414
library

files  79
including  97

limit  225, 240

limiter  180, 225, 240, 245
limiting  244
Limits, Parameter Table  224
linear dependent sources  164, 165
linearization  358
linearize  366, 371
LININTERP  145, 147
LIST  72, 219, 349
listings  367
ln(arg)  362
ln(x)  168
load  367
loadaccumulator  371
local truncation error  38
log(arg)  362
log(x)  168
logarithm  362
logic  164

0  56, 292
1  56, 291
level  49

logical operations, ICL  360
LOGSCALE  17, 340, 349
LONE  349
lossy transmission line  144, 402

model parameters  145
lot/case approach  106
lot/case tolerance  107, 108, 109
lots  116
low state  49, 292
lt  360
LTE  38
LTHRESH  349
LTRA  144
LZERO  349

M

M  66
mag, magnitude (arg)  362
mag(arg)  362
MAG(x)  169
magnetic
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circuit models  238
core  225, 226
field Intensity  226

magnetic core
error message  404

magnetomotive force  226
magnitude  335
main circuit

parameters  81
Make button  24
MakeDB  414
makelabel  371
Maquarie University  193
mathematical function  167
Mathematical Functions  362
max  363
max(x,y)  168
maximum  113
MAXORD  343
mean  363
Measure button  14, 19
measurement

current  155
interactive  18
making  19

Measurement Wizard  113
Measurements tab  45, 114
measuring current  63, 157
MEG  66
memory  370

multiple plots  21
MESFET  5, 192

model definition  193
model parameters  194

Metal Oxide FET  197, 214
Meter  118
Meyer  199
microstrip  147, 148
middle C  318
MIDI VCO  318
MIL  66
min  363

min(x,y)  168
MINBREAK  143, 344
MISD  175
mixed-mode simulation  53, 55, 266
MIXEDINTERP  145, 147
MOD2  169
Mode:  14
model  100

call  98
error  404
frequency domain  249
including  97
JFET  6
name  66, 67
parameter tolerance  108
parameters  398
simple example  71
statements  67
subcircuit parameter  68
table  244

Model Parameters
BJT  187, 188, 189
BSIM1  203, 204
BSIM2  205, 206, 207
BSIM3v31  209
diode  185
JFET  191
MESFET  194
MOSFET Level 1, 2, & 3  200
MOSFET level 6  207
SOI MOSFET  216

modulo  360
modulus operator  170
Monte Carlo  79, 103

analysis  112
data format  117, 120
distribution  112
error messages  123
Parameter Passing  110
scripted  113
syntax  105

Monte Carlo radio button  116
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MONTE, Monte Carlo Analysis  129
MOS level 3  200
MOS2  198
MOS3  198
MOS6  198
MOSFET  197, 214

BSIM1 model parameters  203, 204
BSIM2 model parameters

205, 206, 207
BSIM3 model parameters  209
capacitance  199
convergence  396
level 1, 2 & 3 parameters  200
level 2  6
level 6  6
level 6 model parameters  207
model definition  198
SOI model paramters  216

movecursorleft¨  369
movecursorright  369
movelabel  371
mprint  370
mult_factor  318
multiple winding transformers  142
musical notes  318

N

N  66
N1  135
N2  135
nameplot  367
naming nodes  65
nand  180, 285
native mode  48
natural logarithm  362
nco  318
ne  360
negative component values  67
netlist  48, 59

code models  64, 74
comments  70
complete example  71

continuation line  70
interactive listing  367
structure  60
subcircuit access  68

newplot  371
newplot¨  367
Newton-Raphson  322
nextparam  369
nextplot  364, 366, 367
nextvector  364, 369
NICE MESFET model  193
NL  143
no DC value  407
no such vector  400
noasciiplotvalue  367
nobreak¨  367
NOCONTROL  145, 146
nodal connectivity  60
node

0  66
bridge

53, 54, 56, 266, 267, 281
bridge, a-to-d  51, 269
bridge, d-to-a  52
bridge, stimulus  56
classification  30
differential  74
inverting  77
list  77
modifiers  75
names  65
order  74
types  53, 266
vector  74
voltages  167

noise  365
Noise analysis  34, 324

code models  30
input  156

Nominal  118
non-voltage source elements  173
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nonlinear
capacitor  175
elements  175
function  245
inductor  175
resistor  175

nonlinear dependent source  4, 5, 164
node names  66

nonlinear dependent sources  167
noopalter  346
noopiter  346
nopoints  364
noprint  370
noprintscale  367
nor  287
norm(vector)  364
nosave  370
NOSTEPLIMIT  145, 146
not  176

ICL  360
NRD  197
nreset_delay  296
NRS  197
nset_delay  296
null  77, 369
Null_Allowed  77

parameter table  225
port table  223

num_turns  238
numbers  66
NUMDGT  344
numerator coefficient  406
numerical

artifacts  41
notation  66

Nyquist  39

O

OFF  182
on-line help

device parameters  398
ONE  291

oneshot  225, 242
error message  406

ONOISE  325
op  365
open collector  50, 290, 293
open emitter  294
open_delay  293, 294
Operating Point analysis

18, 30, 162
code models  30
ICL  356
input  156
value  156

operatingpoint  364
OPT  79
Optimization  79, 103

data format  119
error messages  123
multiple parameter  121, 124

OPTIMIZE, Multi-parameter
optimization  131

Optimize.scp  132
Optimize2.scp  132
OPTIONS  29
or  176, 286

ICL  360
order dependencies  60, 357
oscillation  39
oscillator  225

digital  275, 318
sine  254

out_high  54
out_low  54
out_undef  267
Outer  133
output  357

.PRINT  13
aliases  337
aliasing  366
available vectors  366
buffers  267
circuit accounting  348
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control  59
data  73
device/model  365
device/model parameters  337
digital  56
distortion  328
enhanced features  7
file  72
fourier  334
generating  62, 335
getting AC  324
ICL creation  362, 364
ICL, device/model  356
ICL function manip.  359
ICL print  336
ICL, script  355
ICL simulations  356
ICL variables  361
ICL vectors  358
interactive circuit list  367
interpolated  366
linearization  366
measuring current  155
Monte Carlo  117, 120
multiple temperatures  351
noise  325
Optimization  119
plot  339
Pole-Zero  331
Print Expressions  64
printing  335
raw data  365
real time display  338
real time syntax  339
sendplot  365
sensitivity  335
sensitivity example  336
subcircuit data  338
syntax  335
transient  333
vector creation  366
viewing  339

window  14
output data

RSS, EVA, Worst Case  73

P

P  66
PARAM  79

explanation  80
param  369
PARAM expressions  83
PARAM function  82
parameter

tolerance  369
Parameter Manipulation  369
parameter passing  79, 81

errors  85
example  81, 92
Monte Carlo tolerance  110
rules and limitations  84
syntax  89
turning on and off  82

Parameter Sweeping  104
parameter sweeping  79

alter command  367
error messages  123
multiple parameters  121, 124

parameter table  221, 224
parameter tolerance  370
Parameter_Name  224
Parameterized Expressions  86
PARAMS:  84
part description  60
Pass/Fail  118
path  307
pausing a simulation  16
PD  197
peak-to-peak  113
percentage tolerance  108
Persistence  15
ph(arg)  362
phase  335
phaseextend  364
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PHS  169
piece-wise linear  244
piece-wise linear source  262

repeating  225
PIVREL  345
PIVTOL  345
pk_pk  363
placing a tolerance  108
plot  364, 371
plotf  371
plotref  371
plots, multiple  20
Plots pop-up  14, 20
points  364, 366
Pole-Zero analysis  36, 331
poly  365
polydegree  367
polynomial  106

capacitor  139
polynomials

passed parameters  84
port

modifier  75
null  223
table  74

port table  221
Port_Name  222
pos(vector)  364
pos_edge_trig  242
potentiometer  152
preprocessing  80
primitives

digital  47
Print Commands  370
print¨  370
printcursors  370
printevent  370
printing  62

.PRINT  71
D-to-A bridge  267
expressions  64
ICL  60

ICL command  374
output  335
real time expressions  18
subcircuit nodes  69

printmode  367
printname  370
printplot  370
printstatus¨  370
printtext¨  370
printtol  370
printunits  371
printval¨  370
printvector¨  370
"prob" plot  130
probe/csdf  364
program defaults  341
propagation delay  51
properties field  88
PS  197
PSpice

parameter passing  84
Pspice

table models  247
PSW1  154
Ptspersummary  325
pulldown  56, 292

digital ground  66
pullup  56, 291
pulse  362
pulse width modulator  266, 277
pwl  225, 244, 365

C code model  170
error message  406
mode  226
syntax  160

pwl file  262
PWL function  245
pwr(x,y)  168
pwrs(x,y)  168
PZ  29
pz  365
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Q

QUADINTERP  145
quare root  168
quarter wavelength  143
question marks  91
quit  366

R

RAM  313
Ramp  133
ramptime  345
RAND  169
RANDC  169
random number generators  106
random numbers  170
randomly varying inductor  170
REAL  169
real  271

AC output  335
code model  279
elements  266
nodes  53
to analog bridge  272

real output  273
real time

display  12, 338, 339, 365
user generated data  364, 366

real(arg)  362
real_delay  279
real_gain  280
real_to_v  266, 272
realloc  400
reference designation  60, 358

code models  221
simple letter expansion  73

REL  145, 146
relational operations

ICL  360
RELTOL  38, 39, 41, 345
rename  371
repeat  368

Repeating Piece-Wise Linear Source
262

Repeating piece-wise linear source
225

resistive  49
resistor  136

expressions  136
model parameters  137
nonlinear  175
pulldown  292
pullup  291
SPICE 2  138
temperature coeff.  137

resource information  367
Results dialog  118
resume  16, 366
retrig  242
rise time  52, 363
rising delays  281
RLCG transmission line  144
rms  363
rnd(arg)  362
rotate  365
rshunt  346
RSPERL  149
RSS  32, 44, 126

output  73
RSS, Root Summed Square  125
RTF Help  420
runs  366
runs¨  367
rusage  367

S

s, strong  49
s-domain transfer function  225, 249
s_xfer  225, 249

error message  406
sameplot  364
save  357, 364
save command  375
Save New SPICE Model  410
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scaling
numeric entry  66
real time display  340

screen display  15
script

atoms  15, 26
help  27
introduction  26, 28
window  15, 26

script checkbox  117
Script directory  44
script language  124
scripted measurement

setup  114
Scripted Monte Carlo  112, 113
search scheme code models  262
Select Measurement Parameters dialog

14, 19
semiconductor

.MODEL description  60
area dependance  182
BJT  186, 190
capacitor  6, 138
device call  184
device models  181
diode  184
JFET  190
JFET model types  191
MESFET  192
MOSFET  197, 214
resistor  6, 136

sendplot  365
sens  29, 365
Sensitivity  44

output  73
Sensitivity Analysis  125
Sensitivity analysis  32, 329

output  336
set  366

button  23
command  361, 376

set¨  367

setcursor  369
setdoc  371
setlabel  371
setlabeltype  371
setmargins  372
setnthtrigger¨  369
setquery  369
setscaletype  372
setsource  372
settracecolor  372
settracestyle  372
settrigger¨  369
setunits  372
setvec  372
setxlimits  372
setylimits  372
SFFM  161
sgn(x)  168
sheet resistance  137
Shichman  191
Shichman-Hodges  193, 198
show  60, 321, 365
showmod  60, 321, 365

subcircuit model access  68
sigma  112
sigmoidal capacitance  175
signal types  222
simulation

?  13
abort  16
aborting, Esc. key  13
AC  33
AC syntax  323
accuracy  39
analysis types  29
changing values  22
circuit description  60, 64

example  71
continue, ICL  366
control  14
control loops  368
control statements  62
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example  71
Ctrlvec  24
DC convergnce solutions  384
DC sweep  31
delayed status  13
digital  49
directive  370
Distortion  35
Distortion syntax  326
example script  375
Fourier  42, 43
fourier  334
from ICL

example  336
help  27
ICL breakpoints and loops  356
ICL temperature loops  375
initial  12
initial conditions  333
integration methods  41
interactive sweeping  21
loop  377
memory use  21
mixed-mode  55
model description  67
Monte Carlo  112
multiple analysis  376
multiple breakpoint  376
multiple parameter sweeps  23
multiple simulation data  20
netlist  59
Noise  34
Noise syntax  324
operating point  30
operating point syntax

319, 320, 321
options  341
output control  62
output expressions  64
part description  60
pausing  16
performance  57

Pole-Zero  36
syntax  331

power circuits  38
quit, ICL  366
resource use  367
semiconductor description  60
sensitivity  32, 329

simple example  336
stability  40
starting  16
status  13
stopping  16
subcircuit access  69
sweep curve family  26
temperature  43, 350
time step too small  38
transfer function  31

syntax  322
Transient  36
Transient computation  37
Transient syntax  332

Simulation Control dialog  14, 19
Simulation Setup  374
Simulation Setup dialog

passed parameters  87
Simulation Template  370

output  73
Simulation Templates

29, 32, 44, 45, 46, 104, 124, 329, 355
simulator communication  266
simulator time  171
sin(arg)  363
SINC  169
sine  254

error message  406
wave oscillator  225

singular matrix  66, 407
sinusoidal source  155
slew rate block  252
slew rate follower  225
slope extension  244
small signal behavior  168
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Small-Signal Frequency Analysis  323
smooth transition switch  260
smoothing  240

table model  245
SOI MOSFET  216, 232
SOI.DLL  216
sort  366
source

controlled oneshot  242
digital  56, 316

error message  404
digital oscillator  275
MIDI oscillator  318
repeating pwl  225, 262
sine wave  254
square wave  256
triangle wave  258

source stepping  408
spectral analysis  327
SPICE 2

Control Statement Syntax Changes  9
obsolete functions  10
polynomial cap.  139
temperature coeff.  138

SPICE 3  355
SPICE 3 Convergence Helpers  397
Spice Applications Handbook  379
SPICE2/IsSpice4 Differences  2
Spice4.Exe

code models  262
spicedigits  368
SpiceNet

Add button  114
Advanced Settings dialog  116
Batch radio button  117
Cursor Wizard  115
Measurement Wizard  114
Monte Carlo radio button  116
passed parameters  90
Results dialog  118
script checkbox  117

sqrt(arg)  362

square  256
error message  406
wave oscillator  225

square root  168
sr

flip flop  301
latch  305

stability  40
starting a simulation  16
state  47, 50
state machine

digital values  50
entering data  58
error message  405
example  57
syntax  58

state.in
error message  405

Statistical analysis  105
statistical model  112
statistical yield analysis  79
statistics  117
status line  12
Statz  5, 193
Statz Model  193
STD, Standard  129
stddev  363
step  366
step-down divider  311
stimulus

AC  156
AC, current  163
current  162
DC  156
digital  56
distortion  157
distortion, current  163
exponential  160
functions  164
Noise  156
PWL  160
SFFM  161
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transient, current  163
Stimulus button  14
Stimulus Picker dialog  14
stop  357, 366
stop command  356, 361
stopping a simulation  16
storage element  295, 297, 301

level-sensitive  303, 305
STP  170
strength  49, 281

digital source  316
strong  49
subcircuit  100

call statement  218
definition  218
expanded notation  219
expanded syntax  69
getting output from  338
nesting  220
netlist description  68
notation  63, 68
parameter passing  81
parameters  86

defaults  90
simple example  69

sweep  21
adding ICL scripts  25
Ctrlvec  24
curve family  26
device/model parameters  21
entering values  22
group of parameters  23
output to IntuScope  26
parameter selection  14
sendscript  26

Sweep, Parameter Sweeping  132
Sweepdef  133
switch  150, 180, 260

Fermi Probability  154
generic subcircuit  152
model parameters  151, 153
use notes  151

symbols
digital  57

syntax
B element  167
code models  74, 221

T

T  66
table model  225, 244

error message  406
example  76

tan(arg)  363
TD  143
TEMP  43, 171, 346
temperature

analysis  43
circuit  376
coeff.  137, 138
expressions  167
ICL  361
ICL simulation loops  375
syntax  350

template models  81
text file

digital source  316
text strings  370
TF  29
tf  365
tfall  363
THD  42
tilde  77, 403
TIME  171, 358
time  170

expressions  167
time delay

digital  282
transmission line  143

time step too small  408
Time Subcircuit  172
timestep  39

control  151, 178
default control  332
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selection  38
too small  38, 199

timetofreq  365
timetowave  365
title  61, 71, 351
TMAX  38, 178
TNOM  346
toggle, flip flop  299
tolerance  369, 370, 371

reference name  107
Tolerance dialog  107
Tolerance Distribution Notes  105
Tolerance/Sweep/Optimize tab  110
too few nodes  408
topology  64
TRAN  29
tran  365
transcendental  164
Transfer Function  31, 167, 249, 322
transfer function  245
transformer  82, 142

model  238
multiple winding  142

Transient
RSS, EVA, Worst Case  45

Transient analysis  36, 332
code models  30
computation  37
convergence  38
initial conditions  37

translational bridges  54, 56
transmission line  402

coupled  147
ideal  143
lossy  144, 158
lossy model parameters  145
lossy/URC  5
microstrip  147
RC/RD, URC  148
RLCG  144
URC parameters  149

transmission lines

passed parameters  84
trapezoidal  38, 41, 333, 344
triangle  258

error message  406
wave oscillator  225

trigonmetric functions  168
trigonometric  164
Trigonometric Functions  363
trise  363
tristate  50, 290

buffers  291, 292
TRTOL  38, 152, 346
TRUNCDONTCUT  145, 146
TRUNCNR  145, 147
TRYTOCOMPACT  346
TSTART  13
TSTEP  38

linearization  359

U

U  66
u, UNDETERMINED  49
U, UNKNOWN  49
UIC  37, 177, 333
unalias  366
unalterparam  368
UNDETERMINED  293
unit step function  170
units  368
unitvec(arg)  364
unknown device type  401
unknown inputs  281
unlet  366
unresolved model  100
unset  368
update  372
URC  149
user defined nodes  53
User Statements area

passed parameters  87
user-defined measurements

45, 370
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V

valuemin  120
values  66
variable resistor  152
variables, ICL  361
VCCS  166
VCO

error message  406
MIDI  318
sine  254
square  256
triangle  258

VCVS  165
vector  358, 371

@  358
alaising  366
assignment/creation  358
available set, plots  14
creation  366
display  16
for multiple simulations  20
function definition  366
indexing  358
length  364
linearization  358
nodes  74
normalization  364
output description  73
parameter table  224
port table  223
reference  358
saved status  366
saving  18

Vector Functions  363
Vector List  115
vector(arg)  362
Vector_Bounds

parameter table  225
port table  223

version  368
view  357, 365

ICL  60
output  339

viewing past plots  20
VNTOL  38
VOL  36
voltage

difference  70, 335
differential  76
real time display  18

voltage controlled
resistor  152, 170
switch  150
voltage sources  165

voltage controlled switch  260
voltage source

AC/Noise  156
current controlled  166
DC, operating point  156
dependent  164
digital  56
distortion  157
elements  173
functions  164
independent  155
repeating  225, 262
voltage controlled  165

VSCALE  17, 340, 349
Vscr_pwl  225
vsrc_pwl  262
vswitch  260, 262

W

W  197
Ward Dutton  199
warning  407

messages  73, 399
wavefilter  365
waveform

adding  16, 17
autoscale  17
available plots  14
availablility  18
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deleting  16, 17
model/device  18
number displayed  13
scaling  16
Scaling dialog  17
sendplot  28
viewing detail  28

wavelength  143
wavetotime  365
WCS, Worst Case by Sensitivity  128
where  366
while  368
window

Error  13
Output  13
saving position  15

wired “or”  291, 292
working directory  57, 316

code models  262
Working with Tolerances  107
Worst Case  32, 44

output  73
write  365

X

xnor  289
xor  288
xy_array  244

Z

z, hi_impedance  49
Z, MESFET  192
z-transform  279
Z0  143, 403
ZERO  292


