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Solar Power Revisited 
With the ups and downs of alternative energy, 
solar power has maintained an increasing 
presence in today’s alternative energy market.  
Its cost is becoming more justified in the 
industrial and consumer markets, as more 
businesses and people are considering its use 
within today's popular “green” movement. 
Appendix 1 reviews the progress over the past 5 
years since Intusoft Newsletter 78 described the 
economics of solar photovoltaic ,PV, power 
generation.  This newsletter goes on to calculate 
the return on investment for residential PV 
generation in California. 
 
Now, the technical issue is not maximizing the 
energy delivered, but to maximize the cost 
savings. It turns out those periods of maximum 
solar insolence are correlated with periods of 
maximum energy usage. When it’s hot, there is a 
greater need for air conditioning and to pump 
water if you are using a well. That increased 
energy usage comes at a higher price so that 
cost savings are maximized during the late 
summer months. But what can a user do to take 
advantage of these periodic effects? It turns out 
that tilting a fixed solar panel installation toward 
the south will increase power production. There 
are a simple set of geometrical relationships that 
lead to prediction of annual cost savings. See 
http://www.itacanet.org/eng/elec/solar/sun3.pdf 
for the geometrical relationships shown in Figure 
1.  
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Figure 1, Geometrical relationships 

 
The Greek characters have been replaced in the 
following scripts by spelling them out because the 
Greek alphabet isn’t available to programming 
languages. The scripts used here are more 
efficient if the sine and cosine terms are 
evaluated ahead of time, so that the trigonometric 
functions need be evaluated just once. The 
following definitions apply: 
 

sin(str) = s+str[0] 
cos(str) = c+str[0] 
 
For example: 
 
sin(δ) = sin(delta) = sd 
 

The earth is tilted 23.45 degrees in its orbit with 
respect to the sun. That tilt, measured as delta 
can be plotted using the following script: 
 
set units=rad 
day=vector(365) 
delta=23.45*pi/180* 
sin(2*pi*(285+day)/365.25) 
plot delta day 
set units=degrees 

 
 
The script is developed from this equation: 
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Notice that some script lines wrap into the next 
line. When you copy and paste into a command 
window or an ised4 page, that won’t happen. 
 
January 1 is day[0] in this script and units are set 
to radians. Notice that units are changed back to 
their default, degrees after running the script so 
that other scripts are not trashed. Figure 2 is the 
resulting IntuScope plot. The symbol, δ, in 
Figure1 is replaced by delta in the script. 
 

http://www.intusoft.com/nlpdf/nl78.pdf
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Figure 2, Variation in declination by day of the 
year. 
 
The declination is the same all over the earth and 
nearly constant each day of the year. Therefore, 
delta is considered a constant for hourly 
calculations along with latitude, longitude, tilt and 
azimuth. 
 
The hourly constants used in the equations used 
here are: 
 
sd = sin(delta) 
cd = cos(delta) 
td=sd/cd (tan(delta) 
sp = sin(phi), longitude 
cp = cos(phi), longitude 
tp=sp/cp (tan(phi) 
sb = sin(beta), tilt 
cb = cos(beta), tilt 
tb=sb/cb, (tan(beta) 
sa = sin(az), azimuth 
ca = cos(az), azimuth 
 

 
The “hourly” constants sd, cd and td are 
calculated each day and the others are true 
constants that are defined as initial conditions. 
 
The “hour” clock, w, measures the earth’s 
rotation and is defined to be 0 at noon, local time. 
Below is the IntuScope script for w: 
 
w=vector(240)*2*pi/240-pi 

 
The w vector divides time into 0.1-hour 
increments. The longitude can be used to convert 
between time zones. 
 
The solar insolence, sol, at a given location, 
when pointing toward the sun, can be predicted 
as: 
 
sa=sd*sp+cd*cw*cp  
sol=AM1*sa 
 

The equation for the altitude angle; sa=α, above, 
is given by the following equation: 
 

)cos()cos()sin()sin()sin( φδφδα +=     (1.1) 
 
Where α and δ are illustrated in Figure 1 and φ is 
the latitude. 
 
This does not account for seasonal weather 
changes. Once the solar insolence is known, 
then the strength for the offset plane, shown in 
Figure 1, is sol*cos(θ)=sol*ct, where ct is 
described by the following script: 
 
* script for off axis correction 
cd=cos(delta) 
sd = sin(delta) 
cw = cos(w) 
sw = sin(w)) 
ct = sd*sp*cb + sd*cp*sb*ca + 
cd*cp*cb*cw - cd*sp*sb*ca*cw - 
cd*sb*sa*sw 

 
The angle, theta, in cos(θ), or ct in the above 
equation, is the angle between a vector pointing 
at the sun and a vector normal to the solar panel 
surface.  
 
The equation for cos(θ), ct, is given by: 

)cos()sin()sin()cos( δφδθ =  

)cos()sin()cos()sin( Azβφδ+  

)cos()cos()cos()cos( ωβφδ+  

)cos()cos()sin()sin()cos( ωβφδ Az−  

)sin()sin()sin()cos( ωβδ Az−    (1.2) 
 

The actual solar insolence will vary during the 
year because of local weather conditions. In 
California, the California Irrigation Management 
Information System, CIMIS, at 
<www.cimis.water.ca.gov>. can be used to 
retrieve this information. Other localities should 
have similar results that can be applied. In the 
absence of any information, reducing the AM1 
level by 17% is approximately equivalent. 
 
There are hundreds of monitoring locations 
throughout California that report a variety of 
parameters essential to crop watering 
management. Among the parameters is the 
average solar radiation per day and the average 
maximum daily air temperature. The temperature 
can be used to estimate the solar panel operating 
temperature and the solar radiation accounts for 
local weather as well as atmospheric attenuation. 
This is a gold mine of data, some going back to 
1982, for global warming research if you are so 
inclined. The 10-year daily average of solar 
radiation is shown below in Figure 3. 
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Figure 3, CIMIS 10 year average at Camino, CA 
in the Sierra foothills: sum0, the ideal cosine 
shape and the ratio. 
 
The red curve (w6) is the ideal where the solar 
insolence is the value at the surface of the earth 
at the equator when the sun is directly overhead. 
This value, known as AM1, is multiplied by the 
sine of the elevation angle to calculate the 
incident radiation accounting for atmospheric 
attenuation. Notice the attenuation of the 
measured data during the “rainy” season. The 
script used to make the ideal curve is in appendix 
2. Variation from the ideal is different around the 
world because seasonal weather affects the data. 
For this case, the incident solar energy was 
reduced by 17%. 
 
The CIMIS solar radiation data is averaged over 
a 24-hour period and is corrected as though the 
sensor were pointing at the sun. We know, that 
according to [Sze-2nd edition] pg791 that 
atmospheric air mass is proportional to the 
secant (1/cosine) of the angle between the sun 
and zenith. Therefore, multiplying by the sine of 
the elevation angle, alpha, accounts for 
atmospheric attenuation (1/airmass). Then the 
solar energy received for a solar panel pointing at 
the sun is described using the following 
IntuScope script: 
 
sa=sd*sp+cd*cw*cp 

 
If the atmospheric attenuation caused by weather 
variations is assumed constant during the day, 
then the incident radiation can be multiplied by 
the ratio of the CIMIS data, divided by the ideal 
AM1 radiation shown in Figure 3.  The ratio of 
sum0 to ly in Figure 3 can be used account for 
weather caused attenuation: 
 
sol = AM1*ratio*sa 

 

Next, in order to account for a fixed physical 
installation, the instantaneous value of sol is 
multiplied by ct, cos(θ), where θ is angle of 
incidence. The script for ct is: 
 
ct=sd*sp*cb+sd*cp*sb*ca-
cd*sp*sb*ca*cw-cd*sb*sa*sw 

 
Integrating ct*sol calculates the daily energy. 
The daily energy can be multiplied by the daily 
marginal cost in order to calculate the daily return 
in dollars per square meter for a 100% efficient 
system. Multiplying this result by the solar panel 
efficiency and the power conversion efficiency 
gives the final cost calculation.  Repeating for 
each day of the year, and summing the results, 
gets the annual marginal cost recovery. The 
marginal cost is the highest price paid for energy 
on that day based on the previous years electric 
bill. The script in appendix 3 performs these 
calculations and the results for a summer day are 
shown next in Figure 4. 
 
There are some fine points that may modify these 
equations. First, the spectral sensitivity of the 
solar panel may deviate from the CIMIS photo 
detector. Second, the solar panel may be more or 
less sensitive to off angle radiation; depending on 
its construction. Third, the earth’s orbit is not 
circular, its perihelion is off by about 3.5%.  
Corrections for the first two of these 
considerations should be available from the solar 
panel manufacturer or may be measured by the 
end user. Since the daily average insolence is 
obtained from nearby data, the third item tends to 
have little effect on the results. By and large, 
local weather conditions appear to be 
considerably more important than these fine 
points! 

1 rate 13 sa 14 ct 15 sol

50.0 150 250 350 450
day

100m

200m

300m

400m

500m

ra
te

P
lo

t1

1

-3.00 -1.00 1.00 3.00 5.00
w

-3.00

-2.00

-1.00

0

1.00

sa
, c

t
H

ou
rs

0 1

15

14
13

elevation =28.65 deg
azimuth = 140 deg
today=180

 
Figure 4, Result for one day. 

http://www.amazon.com/Physics-Semiconductor-Devices-Simon-Sze/dp/0471056618
http://www.astro.uu.nl/~strous/AA/en/reken/zonpositie.html


As a rule of thumb, a root sum square, RSS, of 
these tolerances provides an overall tolerance on 
the cost recovery and will result in accuracy on 
the order of 5%. 
 
Then the annual cost recovery can be computed 
for a number of tilt angles, β, in order to find the 
best angle in terms of cost recovery. Intuitively, 
this moves the optimal angle toward the summer 
months. The azimuth angle, Az, may be 
constrained by terrain, aesthetic values or 
building codes so that the annual cost recovery 
can be plotted vs. azimuth angle.  
 
While this all seems pretty complex, it should be 
noted that real property installations have a 
generally accepted economic lifetime of 50 years. 
Small improvements become large over a 50-
year time span! For example a 50 sq-meter 
installation can produce $159k over 50 years so 
savings of $1.59k  per percent break even---so a 
few days to study the problem is worth while. 
 
In the uppermost curve of Figure 5, the azimuth 
angle is 180 degrees measured from the north, 
so the panel is south facing. Close examination 
of Figure 5 reveals that when the azimuth angle 
is offset 20 deg to the east (curve 2:cost160), the 
optimum elevation angle changes from 27.28 
degrees to 25.9 degrees and there is a 1.1% 
income loss. It can be concluded that small 
azimuth offsets are well tolerated and that the 
optimum elevation is quite a bit smaller than most 
researchers publish. As a sanity test, when the 
panel faces east, the elevation angle must be 
zero to maximize income, and that’s the result 
shown in Figure5. 
 
Remember, the seasonal atmospheric variation 
and the utility marginal costs are included in 
these calculations. The results can be 
reproduced by building a seasonal ratio table and 
a cost table and using the script in appendix 3. 
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Figure 5, Income vs. elevation angle for different 
azimuth offsets, maxi, w6, traces the maximum 
cost. 

So the bottom line is for an installed cost of $600 
per sq-meter, the annual return on investment is 
10.6% without any direct subsidy. We get to $600 
watts/sq-meter using a Chinese built 1.2 sq-
meter panel producing 175 watts, costing  
$2.5/watt That’s 175*2.5/1.2 = $365.sq-meter. 
The remaining $235 takes care of installation, 
batteries and power conversion equipment.  Both 
numbers should come down over time, even as 
the marginal cost recovery goes up. So, at least 
in California, solar power is economically viable 
right now! 
 
Appendix 1, Solar Energy Today: 
Back in 2005, Intusoft introduced solar cell 
modeling coupled with the economics of 
photovoltaic power generation.  Not much has 
changed on the technology front. The benchmark 
for energy, that’s the price of oil, has gyrated 
wildly between 20 and 140 dollars per barrel. The 
average has moved up by nearly 50%, 
considerably faster than the historical average. 
The cost of solar panels has been stubbornly 
constant for most of the past decade; however, in 
the past several years China has been 
manufacturing solar panels at about ½ the price 
of mainstream manufacturers. Much of the 
problem (price not declining) was caused by 
subsidies given by Germany and Spain, 
guaranteeing to purchase solar power for up to 
$.5 per kilowatt-hour. Evidently, this subsidy gave 
little incentive to reduce prices. For some reason 
there was a popular misconception that there 
was a shortage of Silicon. As we know, Silicon 
comes from sand, and our beaches are still very 
sandy!  Actually the shortage was in wafer 
fabrication. Now that we are seeing rough 
economic times, the PV subsidy in Spain and 
Germany is going away. The government in 
California regulates the cost of electricity. 
Consumers are penalized for using too much, so 
there is an artificial price structure that is 
currently decoupled from the price of oil. The net 
result is a reduction in the PV generation price of 
about 50% over the past 5 years, which is in line 
with our previous prediction; although not in 
accordance with our price-performance model. 
Unpredictable government policies have played a 
major role in making predictions about the 
economics of PV generation being uncertain in 
the short run. Over the long run, the time-certain 
march of technology should override government 
policies. 
 
During this time, Intusoft introduced DSP 
Designer. DSP Designer is a software suite that 
brings the power of the  IsSpice4 AC, DC and 
TRAN analysis to the hardware world. Coupled 
with code generators and template designs, plus 
the very low price of DSP chips; their 
incorporation in switch mode power supply, 
SPMS, designs is increasing rapidly. Intusoft 



builds an evaluation board consisting of dual 
synchronous buck regulators; the target 
application is for a solar panel battery charger. 
This belongs to a class of regulators known as 
micro-inverters. The idea is to provide maximum 
power point tracking, MPPT, on a per panel 
basis. Most people use this to tie the panel 
directly to the grid; hence the micro-inverter. 
However, we are concentrating on also having a 
battery backup, so that the grid-tie inverter is a 
separate component. It turns out the best 
economics uses one inverter for a number of 
solar panels. This DSP evaluation board allows 
the user to explore many modern SMPS 
problems, including synchronous bi-directional 
power conversion, virtual current control, MPPT 
and power factor correction, PFC, technology 
used in the grid-tie inverter. MPPT provides 
increased power when uncertainty over the 
operating environment can’t be predicted. The 
increased efficiency produces about 15% 
additional power. The Intusoft regulators achieve 
that with 98% efficiency and at a production cost 
of about $20 per panel or about 10 cents per 
watt. That increases cost by 4% for a net energy 
gain of 9%. That translates into 9% fewer panels 
to produce the same amount of electrical power. 
 
Other parts of the economic picture include the 
willingness of the utility and state controlled utility 
commission to continue various subsidies. If a 
large number of consumers generate solar 
power, the utility companies will lose profit and 
their political lobby will ask the state to revisit its 
policy. Assuming that occurs, a battery backup 
allows the user to deliver power to household 
loads when needed so that the power never flows 
back into the grid. Batteries become a fairly large 
cost component with life times that may approach 
10 years. Electric vehicle technology will help 
improve the battery economic picture. Of course, 
the biggest argument for battery backup is 
energy independence. Configured properly, a 
backup system can supply power at a “life-
support” level indefinitely. That’s a big plus in 
communities where electrical power approaches 
third-world reliability. 
 
 
 
Appendix 2, Script to predict ideal solar 
radiation: 
 
set units=rad 
*unused here, used to translate 
local solar time to something else 
longitude=120.00 
latitude=39.084 
* make the hour angle 0 at noon 
w=vector(240)*2*pi/240-pi 
*newplot theplot w 
plot w w 

AM1=975 
*oct 29 
today=0 
phi= latitude *pi/180 
sp=sin(phi) 
cp=cos(phi) 
day=vector(365) 
Ly=vector(365) 
cw=cos(w) 
delta=23.45*pi/180*sin(2*pi*(285+day
)/365.25) 
while today < 365 
sd=sin(delta[today]) 
cd=cos(delta[today]) 
sa=sd*sp+cd*cw*cp 
plot sa w 
homecursors 
movecursorright 0 sa 0 
movecursorleft 1 sa 0 
sol=AM1*integrate(sa) 
plot sol w 
solsum=getcursory1(sol)-
getcursory0(sol) 
Ly[today]=2.06*solsum/(2*pi) 
today=today+1 
end  
plot Ly day 
set units=degrees 
 
 
Appendix 3, Calculating annual return 
 
*load ratio.grf, takes care of day 
vec 
Ly=vector(365) 
newplot days day 
plot plot1.ratio 
set units=rad 
delta=23.45*pi/180*sin(2*pi*(285+day
)/365.25) 
plot delta 
setplot constants 
longitude=120.00 
latitude=39.084 
newplot hours  
w=vector(240)*2*pi/240-pi 
sw=sin(w) 
cw=cos(w) 
plot sw w 
setplot constants 
askvalues  az "azimuth in degrees 
from north" 
az=pi/180*az 
today=0 
AM1=975 
phi=latitude*pi/180 
sp=sin(phi) 
cp=cos(phi) 
tp=sp/cp 
beta=vector(10)/10 
cost = vector(10) 
energy=0 
 



nb=0 
nc=0 
 
beta[0]=1m 
 
nb=0 
saz=sin(az) 
caz=cos(az) 
taz=saz/caz 
while (nb < 10) 
 sb=sin(beta[nb]) 
 cb=cos(beta[nb]) 
 tb=sb/cb 
 constants.today=0 
 while today <  365  
 
  setplot days  
 
 constants.argd=delta[today] 
  constants.todaysratio = 
ratio[today] 
 
  setplot hours 
  sd=sin(argd) 
  cd=cos(argd) 
  td=sd/cd 
  sa=sd*sp+cd*cw*cp 
 
 ct=sd*sp*cb+sd*cp*sb*caz+cd*c
p*cb*cw-cd*sp*sb*caz*cw-cd*sb*saz*sw 
 
 sol=AM1*todaysratio*sa*ct 
  cwp=-tan(phi)*td 
  ws=acos(-tp*td) 
  a=cp/(saz*tb)+sp/saz 
  b=td*(cp/taz-
sp/(saz*tb)) 
  cwpp=(a*b+sqrt((a*a-
b*b+1)))/(a*a+1) 
  cwnp=(a*b-sqrt((a*a-
b*b+1)))/(a*a+1) 
  *sunset 
  wpp=acos(cwpp) 
  wp=ws 
  *sunrise 
  wnp=-acos(cwnp) 
  wn =-ws 
  function smin(x,y) (x < 
y) * x + (x >= y) * y  
  function smax(x,y) (x > 
y) * x + (x <= y) * y  
  sunstart = smax(wn,wnp) 
  sundone = smin(wp,wpp) 
  setcursor 0 sunstart 
  setcursor 1 sundone 
*   plot sa w 
*   plot ct  
  soli=integrate(sol) 
*   plot  sol  
  constants.energy = 
2.06*(getcursory1( soli) - 
getcursory0(soli))/(2*pi)  
  

  plot1.Ly[today] = 
energy 
  constants.today=today+1 
 end 
 setplot plot1 
 constants.cost[nc]=average(Ly
*rate/2.06*24m)*365*.17*.9 
 setplot constants 
 family[nc]=nb 
 nc=nc+1 
 nb=nb+1 
end 
setplot plot1 
plot Ly  
setplot constants 
beta = beta*180/pi 
setunits beta degrees 
setunits cost dollars 
plot cost beta 
set units=degrees 
 

  
  
 
 
 
 


