

The OP-AMP model provided in most SPICE packages was found to have serious flaws:

1. No output inductance
2. No summing junction capacitance
3. Load current not reflected to power lines

These oversights would incorrectly predict stable circuit operation for certain capacitive loads or high impedance feedback networks. Some power buffer topologies could not be simulated because they use load reflected power line current. To resolve these problems, intusoft developed a new generic OP-AMP model for PRE-SPICE and included information on selecting parameters. It is used for the UA741 model in the libraries and is the subject of this issues application note.

APPLICATION NOTE: OP-AMP MODELS

GENERIC BIPOLAR OP-AMPS: Parameters common to many OP-AMPS can be modeled using similar techniques. A generic model has been created for OP-AMPS that are constructed using bipolar technology. Besides modeling the linear and DC transfer function, the non linear model includes the following parameters.

- Input stage non linearities
- Input voltage and current offsets and bias
- Slew rate limiting
- Common mode gain
- Power supply rejection
- Output current limiting
- Output voltage limiting
- Reflection of load current to power input
- Output stage non linearities

The equivalent circuit shown in figure 1 takes advantage of the idealized device behavior possible through simulation. Parameters are defined for the three stages of the simulated amplifier.

Input Stage: The input non linearities are simulated using Q1, Q2, Q3 and D1. These are set up to simulate the topology for a 741 or similar amplifier with respect to bias and common mode range. The input transistors, Q1 and Q2, should be modeled to reflect the performance characteristics of the op amp so that bias current, offset current and offset voltage are modeled. Noise parameters can also be modeled in this stage. RCM and CCM will convert common mode signals to differential signals and also couple power line variations into the input. The high frequency pole is modeled with RC1, RC2 and CHF. Values of RC1 and RC2 must be small in order to get the input capacitance of Q1 and Q2 to provide reasonable high frequency behavior. Q1 and Q2 are made slightly different to develop input offsets, and their emission coefficients can be selected to simulate the effect of other transistor cascades in the input and slew rate limiting.

.SUBCKT UA741 $2 \begin{array}{llllll}3 & 6 & 7 & 4\end{array}$

* - IN + OUTVCC VEE
.MODEL QN741 NPN
.MODEL D741 D(CJO=3P)
D1 711 D741
RC2 11 12 1K
RC1 1181 K
CHF 812 55P
Q1 8210 QNL1
.MODEL QNL1 NPN(NF=1.5
$+\mathrm{BF}=111 \mathrm{IS}=8 \mathrm{E}-16 \mathrm{CJE}=3 \mathrm{P}$)
Q2 12010 QNL2
.MODEL QNL2 NPN(NF=1.5
$+\mathrm{BF}=144 \mathrm{IS}=8.3 \mathrm{E}-16 \mathrm{CJE}=3 \mathrm{P}$)
Q3 10144 QN741
CCM 104 2.5PF
IEE 414 185NA
GA $015812-0.9 \mathrm{M}$
GCM 0150 10-6.3N
R2 150 100K
D2 150 D741 OFF
D3 015 D741 OFF
GB 01601512.5
D4 1617 D741 OFF
D5 1816 D741 OFF

EP 17070-1.81
EN 180402.31
D6 1916 D741 OFF
D7 1620 D741 OFF
Q4 71921 QNO
.MODEL QNO NPN(BF=150 IS=1E-14)
Q6 42021 QPO
.MODEL QPO PNP(BF=150 IS=1E-14)
L1 216 30U
C3 60 15PF
RL1 216 1K
R5 1621 1MEG
IRO 2019 170U
V140-15
R6 26 100K
RCM 104 10MEG
R8 52 100K
V2 50 PULSE 0500025 U
C2 1516 30P
RP 74 10K
RO2 160 1K
V3 7015
.END S

Figure 1, A generic Op-amp Equivalent Circuit; shaded areas contain components external to the actual op-amp model and are used for simulation purposes only.

APPLICATION NOTE: OP-AMP MODELS

Slew rate limiting is set by this stage. The large signal output voltage is limited to BETA3*IEE*RC and the small signal gain is RC*.5*BETA3*IEE/(NF*VT). If the small signal output is integrated to provide a unity gain cross over at the radian frequency Wt , the the slew rate is:

$$
\mathrm{dV} / \mathrm{dT}=2^{*} \mathrm{NF}^{*} \mathrm{VT} \mathrm{~T}^{*} \mathrm{WT}
$$

The emission coefficient, NF, then sets the slew rate limit or you could add emitter resistance as done in some other models, however, modifying N uses fewer nodes. To make the slew limit unsymmetrical you can unbalance the collector resistance RC1 and RC2.

Interstage: Controlled sources GA and GCM couple the differential and common mode signals to the interstage amplifier, GB. The DC gain is given by:

$$
\text { Adiff }=R C^{*} \cdot 5^{*}\left(B E T A 3^{\star} \mid E E /\left(N F^{\star} V T\right)\right)^{*} G A^{*} R 2^{*} G B^{\star} R O 2
$$

At frequencies below the pole at $W=1 /\left(2^{*} R C^{*} C H F\right)$, the gain is given by:

Adiff(mid freq) $=$ RC $^{*} .5^{*}\left(B E T A 3^{*} I E E /\left(N F^{*} V T\right)\right)^{*} G A /(j W * C 2)$
and the unity gain frequency is approximated by solving for W when Adiff $=1$.

Two non linearities are modeled in the interstage. First, the large signal overshoot is limited by diodes D2 and D3. For amplifiers where this is caused by a pair of diodes, then the emission coefficients of the diodes can be adjusted. The second non linearity is the output swing which is taken as a constant value subtracted from the power rails. D4, D5, EP and EN act as output limiters. It is important to return the limited current to the subcircuit ground node so that the source, GB, does not generate any apparent power.

APPLICATION NOTE: OP-AMP MODELS

Static power dissipation is modeled using resistor RP connected across the power lines.

Output Stage: The output stage is modeled using D6, D7, Q4, Q5 and L. The transistors are not given any AC parameters, instead a discrete inductor simulates the AC performance while the transistor BETA and the source IRO account for both current limit and output resistance. This stage will return the load current to the power lines, enabling simulation of certain power stage configurations.

741 OP-AMP: The 741 OP-AMP is a high performance monolithic Operational Amplifier used in many of todays electronic products. Figure 1 gives the full nonlinear model schematic and listing. A simplified model that excludes nonlinear elements is given in figure 2. Figure 3 shows how the models predict instability when the amplifier is improperly loaded.

.SUBCKT UA741 2 3 6 - IN + OUT VCC VEE

RP 47 10K
RXX 40 10MEG
*
IBP 30 80NA
RIP 30 10MEG
CIP 30 1.4PF
R1 11 12 5K
R2 1213 50K
C1 120 13PF
GA 0140132700
C2 1314 2.7PF
RO 14075
L 146 35UHY
IBN 20 100NA
RIN 20 10MEG
CL 60 3PF
.ENDS
CIN 20 1.4PF
VOFST 210 1MV
RID 103 200K
EA 1101031
Figure 2, A linear UA741 model

APPLICATION NOTE: OP-AMP MODELS

Figure 3, OP-AMP Model Predicts Instability

