
1

Copyright © Intusoft, All Rights Reserved

Personal Computer Circuit & System Design Tools

Issue #76 Apr 2005
Tel. (310) 329-3295
Fax (310) 329-9864

Intusoft Newsletter

Transfer Function Analyzer
Hardware Transfer Function Analyzers, TFA’s,
are used to measure control systems gain,
admittance, impedance and stability margins.
SPICE usually performs these functions using
its AC analysis capability, refer to the GFT,
http://intusoft.com/gft.htm, for an explanation
of how this is done. From time-to-time it is
necessary to perform the TFA operation based
on a time domain simulation. The time domain
solution must take several points per cycle of
the test signal to meet the Nyquist criteria.
Moreover, it may be necessary to run each test
frequency for many cycles, or sweep the
frequency slowly in order to reduce the effects
of switching noise, and resolve high Q
resonances. Plus, signal strength must be small
enough to keep the circuit in the linear region.
All of these constraints potentially add up to
enormous simulation time. This article will
describe the SPICE model for a TFA and
develop a rational for setting the sweep time,
filter bandwidth, and frequency limits. First,
define a signal in the complex plain as follows:

In This Issue

1 Transfer Function
Analyzer

7 Using the TFA

9 Divide by Zero
revisited

10 PFC Average
Models

12 A Nonlinear
Capacitor Model
For SPICE

14 “AUTOEXEC.NT”
Installation
Problem

15 How to Use
ICL Variables

v = Re*cos(wt) + jIm*sin(wt)
where Re is the real part

Im is the imaginary part
w is the radian frequency
j = sqrt(-1)

Then separate v into 2 channels by multiplying by cos(wt) for one
channel and *sin(wt) for the other

Vr = Re*cos(wt)^2 + jIm*sin(wt)*cos(wt)
Vi= -Im*sin(wt)^2 + jIm*cos(wt)*sin(wt)

http://intusoft.com/gft.htm

2

Cos

Sin

Control

VCO

Mul Filter
Tau

Mul Filter
Tau

Mul Filter
Tau

Mul Filter
Tau

in

out

ImIn

ReIn

ImOut

ReOut

SigLo SigHi

Vsweep

Transfer
Function
Analyzer

Ksig

-

-

ReFreq

Filter
Tau

Freq

Filter
+ S&H

Filter
+ S&H

Figure 1: A SPICE model for a Transfer Function Analyzer with Freq
delayed to match the output delays.

Passing Vr and Vi through a lowpass filter removes the sin-cos
products because they are at 2w. This results in the average values
indicated below. Notice that DC components in the in and out
signals give rise to AC signals at the injection frequency. A method
of AC coupling is needed. The average values are:

VrAvg = .5*Re
ViAvg = -.5*Im

This procedure can be carried out for signals defined at nodes in
and out. Then a complex vector is formed for each signal, using the
ICL script notation:

Vin = v(ReIn) + j(v(ImIn))
Vout= v(ReOut) + j(v(ImOut))

The IsSpice4 ICL, http://www.intusoft.com/script/pages/index.htm
 allows algebraic manipulation of these complex vectors, so that:

gain = db(Vout/Vin)
phase = phaseextend(phase(vout)-phase(vin))

where db, phaseextend, and phase are ICL functions:
 http://www.intusoft.com/script/pages/functions.htm

The complete TFA block diagram is shown in Figure 1.

http://www.intusoft.com/script/pages/index.htm
http://www.intusoft.com/script/pages/functions.htm

3

The approach taken here is to sweep the signal frequency rather
than stepping it through a set of discrete frequencies. The frequency
will be swept using an exponential function of time:

time < {Tstart} ?
{Fs/KVCO} :
{Fs/KVCO}*exp((time-{Tstart})/{Tsweep}*ln({Fe/Fs}))

Fs and Fe are the first and last frequency to be swept. KVCO is a
scaling constant that can be used to keep the sweep node voltage
from getting too large. Tsweep is the length of time for the sweep,
and Tstart is the time needed for the circuit to come to steady state
before beginning the sweep.

An exponential sweep is used in order to have equal frequency
multiples in equal time. For example, the sweep time for the last
octave is the same as for the first octave. However, the simulation
time will get progressively longer on a per-octave basis because
more time steps will be necessary as the frequency gets higher. That
will penalize large Fe/Fs ratios. Fe/Fs, up to 50, gives reasonable
results. Figure 2 shows how the frequency is swept over time.

lo
g

(F
)

TimeTstart Tdelay Tstop

Fe

Fs
Fstart

Fend

Simulation
Collects
Data

Figure 2: Graph of log(F) vs. Time shows how the sweep is computed.

4

Figure 3: Filter is effective for Tstart > 1.54/Tau

Several filters are needed to reject AC signals. First, the double
frequency signal present in the multiplier output needs to be reduced.
This is achieved using Bessel filters. Bessel filters have a constant
delay property so that the time domain signals have no phase
distortion. The 5th-order Bessel filter gain is -40db at f=1.54/Tau, as
shown in Figure 3. Its primary purpose is to eliminate the double
frequency component so that Tau > 1.54/Fstart. As the sweep begins,
there will be a transient error that will pass in about 3 Bessel-filter
time constants. Therefore, the time to start taking data will be
Tstart+3*Tau. You can compute the actual starting frequency, Fstart,
by solving the sweep generator exponential equation:

Assuming the following relationships:
Tau=1.54*Fstart

Fs=Fstart/(exp((3*Tau/Tsweep)*ln(Fend/Fstart))).

Then the actual end frequency, Fend, is the value at
time = Tstart + Tsweep – Tau

Fe=Fs*exp((Tsweep/(Tsweep-Tau))*ln(Fend/Fs)).

1 ph_v2 2 db_v2

1 10 100 1k 10k 100k
frequency in hertz

-880

-680

-480

-280

-80.0

ph
_v

2
in

 d
eg

re
es

-200

-100

0

100

200

db
_v

2
in

 d
b(

vo
lts

)
P

lo
t1

0 1

2

1

5

R2
.75

1

L1
150u

C1
20u

in out

Figure 4: The ideal gain and phase should be zero, the gain error in
gain is under .05%.

Figure 4 shows the result when applying the above equations for a
gain of 1 with Fs=500, Fend=25k, Tsweep=100m.

1 phase 2 gain

100 1k 10k 100k
freq in hertz

-300m

-200m

-100m

0

100m

ph
as

e i
n

de
gr

ee
s

-10.0m

0

10.0m

20.0m

30.0m

ga
in

 in
 d

b(
vo

lts
)

P
lo

t1

2

1
403.176u db(volts) RMS
2.42273m degrees RMS

Next, the input signal’s DC component needs to be removed because
it results in an interfering signal at the injection frequency. This is
accomplished by using a sample and hold at the output of a first-
order lowpass filter. This DC value is sampled at time Tdelay for
both the in and out signals. It is then subtracted from the in and out
signals.

The sweep rate moves a tracking filter across the 500-to-25kHz
frequency range. For narrow band resonance, an error will appear if
the sweep time is too fast. Figure 5 shows a typical resonant circuit
with Figure 6 showing the results for Tsweep=50ms. Both phase and
gain show reduced accuracy because of the relatively fast sweep.
Increasing sweep time to 100ms makes the error negligible for this
case.

Figure 5: An RLC test circuit

6

1 phaset 2 gaint 3 gain 4 phase

100 1k 10k 100k
frequency in hertz

-160

-120

-80.0

-40.0

0
ph

as
et

, p
ha

se
 in

 d
eg

re
es

-50.0

-30.0

-10.0

10.0

30.0

ga
in

t,
ga

in
 in

 d
b(

vo
lts

)
P

lo
t2

1

23

4

Figure 6: Transient simulation results compared with the AC analysis
for Tsweep=50m; results almost identical for Tsweep=100ms

Now, the TFA can be put together into a model. Using the approach
taken previously for the GFT models, the user will be required to
name the TFA subcircuit XTFA. That allows the measurements scripts
to reach into the subcircuit. For example, freq:XTFA is the frequency
node. That simplifies the symbol as shown in figure 7.

Figure 7: Only pins that are need for interconnection are brought out

The model separates the signal, pins Hi and Lo, from the
measurement pins, in and out. The separation allows the model to be
used either as a single injection GFT type to measure “loop gain,” or
to measure voltage transfer functions elsewhere in the control loop.
Figure 8 shows how it works with the forward switching regulator
used in the Intusoft Power Templates.

Lo Hi

in out

XTFA

7

Figure 8: Comparison of results from TFA simulation;
waveform 1 and 2 vs. an Average model in an AC simulation,
waveforms 3 and 4.

The accuracy of the TFA measured data is dependant on signal
strength. It may take some adjustment to get the “right” answer.
Internally, the sweep signal is connected from cos:XTFA to
cosx:XTFA, using a 1k resistor. It is then multiplied by a ramp function
and the Vsigpk parameter. You can modulate its value externally by
connecting a PWL function between cos:XTFA and cosx:XTFA.
Generally, you can increase signal strength at higher frequencies
when the loop gain is small.

Clearly you don’t want to use the time domain TFA if an average
model is available. But if an average model doesn’t exist for your
specific application, it may take several days to make a new model.
An extra hour or so of simulation time is a good trade-off. And, there
are topologies such as some resonant converters, that have no suitable
theory for making an average model. But be aware, the long
simulations will push your memory limits, so consider upgrading to
1 or 2Gbytes of RAM and even getting a faster machine!

1 phase 2 gain 3 phase#a 4 gain#a

1k 2k 5k 10k 20k 50k 100k 200k 500k 1Meg
freq in hertz

-25.0

-15.0

-5.00

5.00

15.0
ga

in
, g

ai
n#

a
 in

 d
b(

vo
lts

)

-40.0

0

40.0

80.0

120

ph
as

e,
 ph

as
e#

a
 in

 d
eg

re
es

P
lo

t1

12
3
4

Using the TFA

The TFA model is located in pwmprim.lib, and its symbols are in
TFA.sym. Property help is in <Icapsdir>\pr\pwmprim\TFA.rtf.
Property help is accessed from the label dialog as show in Figure 9.

8

Figure 10:

Enter parameters in the
Transient Analysis setup
dialog for builds > 2450.

Figure 9: Dialogs shown after double clicking on the TFA symbol
and pressing the property help button.

You can copy and paste the parameters into a text block on the
schematic. Text blocks labeled “parameters” in their first line will
have the parameters inserted when the simulation is run. For
builds > 2450, you can place parameters in the transient analysis
setup as shown in Figure 10.

Remember to change the reference designation of the TFA model to
XTFA so that the scripts can access the internal plot vectors.

9

Divide by Zero revisited
Divide by zero is the “number one” reason for behavioral models to
fail. Looking at SPICE from the outside, it’s hard to understand why
these errors occur. In our 8.x.11 release we added an IsSpice4 error
message, “Possible numerical overflow in <B-element name>.” These
types of warnings indicate that the simulator had to return results for
numerical overflow conditions. When that happens, it’s more likely
to mess up the matrix and create a non-convergent solution. You
might be lucky and get to a stable answer, but the longer the simulation
run the more likely your luck will run out. That means that you need
to investigate the problem and take corrective action. We’ve discussed
protection against divide by zero before, but now you may see the
warning for expressions employing transcendental functions.

When a transient simulation tries to find a solution, it starts by
estimating the state variables based on the existing time step. The
circuit model instances then load the matrix admittance values. For
B-elements, the solution is moved from the right-hand side into the
matrix using derivatives, if they are available as discussed in
Newsletter 72, Convergence Methods. Then the solution is iterated
to find a stable solution at that time step. If one can’t be found, the
time step is scaled back and the process is repeated. So, when you
add a behavioral expression, like v=asin(I(VM)), first IsSpice4 will
evaluate asin(I(VM)). If I(VM) is >= 1 or <= -1, the simulator will
complain. Remember, I(VM) is the solution made after each iteration.
Placing a limit on it before an iteration is no guarantee that the
solution will be within that limit. So one typically does the following:

V= I(VM)>= 1 ? 1 : I(VM)<= -1 ? I(VM)

But the problem comes when the derivative is calculated.

The derivative is calculated as:

1/(sqrt(1- I(VM)2)).

The derivative calculation uses the solution vector that could be out
of bounds. There’s nothing you can do to protect against it. So until
we invent something new, here’s a method of building an asin() model
that works.

First, open IntuScope and enter the following in the command window

X=vector(1000)/1000
Y=asin(x)*pi/180
Plot y x

10

Then, execute the script by pressing <Ctrl>+r.

The IntuScope default for phase is degrees, but the IsSpice4 simulator
works with radians. Therefore, go to the calculator menu and under
Functions select PWL pwl.1pct. The pwl values will be placed in the
Output Record window of IntuScope. Then, open SpiceNet and place
a table model. It’s located in Behavioral\Function Block\TABLELIM.
If you press x, then type tablelim and press <Enter>. The x-part
browser dialog will come up. Navigate to the desired part. Press the
<Place> button to position the part on your schematic. Then, double
click the value field for xy_array (???) and press enter. Paste the pwl
values from IntuScope’s Output Record window up to, but excluding
the last comma (recommend full screen with IntuScope before copy/
paste). Press ok, then select xy_array again to verify the data is pasted
correctly. Dismiss the Properties dialog and set up a time-domain
simulation that sweeps the input voltage from -2 to 2 volts (i.e., ramp
usingPWL as voltage source stimulus to the table model). Run it and
display the output in IntuScope. Press d to look at the derivative.

Next, return to SpiceNet, press x, and place TABLE. It’s one entry
above TABLELIM that you just used. Paste the xy_array into that
model. Replace the previous model with TABLE and run the
simulation again. Then press <Ctrl>+u in IntuScope for an update.
Notice that the second model extrapolated the data based on
derivatives, so that its out-of-bound results are continuous. If you
limit the result, you can use the second model and the simulation
may converge a bit better.

So you might ask, who needs an asin function in a behavioral model?
That leads to the next topic, calculating the boost limit in boost
converters.

If you’re into power supplies, you’ll recognize that the boost circuit
is widely used for power factor correction, PFC, circuits. The way it
works is by using a control system that makes the input current
waveform proportional to the input voltage, such that Iin = k*Vin. If
that can be done accurately over the entire cycle, then unity power
factor is achieved. Then, a lower frequency control loop is used to
control the output voltage. A large output capacitor limits the ripple
to an acceptable value. An ideal circuit and its waveforms are shown
in Figure 11.

PFC Average Models

11

1 iin 2 v(in) 3 iline

2.50m 7.50m 12.5m 17.5m 22.5m
time in seconds

-340

-140

60.0

260

460

v(
in

)
 in

 v
ol

ts

-2.80

-1.80

-800m

200m

1.20

iin
 in

 a
m

pe
re

s
P

lo
t1

1

3

2

Figure 11: An ideal PFC and its waveforms with Don limited to .95.

The circuit runs into trouble as the input voltage and current
approaches zero. Output voltage at steady state is given by
Vout = Vin/(1-Don). Typically, Don is limited to something like .97,
so that maximum boost in Vin/.03 = 33*Vin. Note: if there was no
Don limit, then the circuit could get stuck at Don=1. When the switch
capacitance is included, the boost limit can be compromised further
because of the finite rise time of the flyback waveform. When the
flyback voltage is less than the output voltage, there is no output
current flow. When a current is switched into an L-C network, the
voltage is a ringing sine wave. Solving for the time to rise to Vout
requires computation of the inverse sine function, asin(). Even more
interesting is the apparent resistance of the MOSFET, due to capacitive
charge and discharge when there is no output conduction. That creates
a resistive load at the input, which further reduces the waveform
distortion. Figure 12 compares an ideal boost limited model with
one that includes switch and diode capacitance.

Vin Vout

Don

12

1 iv8 2 iv8#1

7.17m 7.69m 8.21m 8.73m 9.25m
time in seconds

-404m

-114m

175m

464m

753m

iv
8,

 iv
8#

1
in

 a
m

pe
re

s
P

lo
t1

12

1

C

B1
Voltage
f(v)

v

+
vc
-

dQ = d(CVc) = Cd(Vc)
dQ = Cdv - Cd(f(v))

The model is made up of an ideal capacitor C and an arbitrary voltage
source. The main task is to find an expression for B1 that will make
this combination work as a nonlinear voltage-dependent capacitor
model. Note, as indicated in Figure 13, the voltage for the new model
is the sum of the voltage across the ideal capacitor and the voltage
expression f(v) describing the B1 source.

Figure 12: The expanded line-current waveforms illustrate the effect
of adding MOSFET and diode capacitance in waveform 1.

It’s possible to introduce the behavioral equations for asin() and the
nonlinear load, using table models that circumvent the calculation
of out-of-bound derivatives. These techniques have been
incorporated in the NCP1650 average model in our power library.

Nonlinear capacitor models are required for any capacitor whose
capacitance, C(V), is a function of the voltage applied to it. Using
basic analog behavioral modeling tools in IsSpice4, such a non-linear
capacitor model can be developed.

Consider the model shown in Figure 13 below.

Figure 13: Nonlinear Capacitor Model

A Nonlinear Capacitor Model
For SPICE

13

C Ce
kv= -e

C dv C dve
kv= -ÚÚ e

dQ C dv Cdv Cd f vkv= = --e (())

f v dv v
k

kv kv() ()= - = +- -Ú 1
1

e e

Then, integrating with respect to v, and using basic circuit theory for
the ideal capacitor (Q = C(v)*V), the following expression is obtained
for the new model:

Now we can solve for f(v), which is the expression needed to complete
the model.

The schematic (varicap.dwg) complies with this equation. It’s in

close agreement when using a constant capacitor of value Ce , except

in the neighborhood of the resonance.

1 ph_v(tx) 2 db_v(tx) 3 ph_v(txx) 4 db_v(txx)

1 10 100 1k 10k 100k
frequency in hertz

-40.0

-20.0

0

20.0

40.0

db
_v

(tx
),

 d
b_

v(
tx

x)
 in

 d
b(

vo
lts

)

-160

-120

-80.0

-40.0

0

ph
_v

(tx
),

 p
h_

v(
tx

x)
 in

 d
eg

re
es

P
lo

t1

1

2

3
4

1Meg

Figure 14: Comparing nonlinear capacitor models

As an example, let’s define an effective capacitance as follows:

1 V1
AC = 1
3

8

L2 10u R2 10m

10

C1
1u

B4
Voltage

tx

v(tx) + exp(-.2552*v(tx))/.2552

11

L3 10u R3 10m

C2
c={1u*exp(-.2552*3)}

txx

Vtx

Vtxx

14

V1

2

C1
{CJO}

B1
Voltage

parameters
CJO=1000p
M=1
VJ=1

V2

k

av(k,a)-{VJ/(1-M+1e-13)}*((1+v(k,a)/{VJ}) (̂{1-M+1e-13}))

scope5
CJO=1n
M=1
VJ=1
v=vector(1000)/100
q=VJ*CJO*((1+v/VJ)^(1-M+1e-13))/
 (1-M+1e-13)-VJ*CJO/(1-M+1e-13)
c=CJO/((1+v/VJ)^M)
plot c v
plot q
qi = integrate(c)
plot qi

Use this to validate the B1 expression

scope5
CJO=1n
M=1
VJ=1
c=CJO/((1+default/VJ)^M)
plot c

Use this to check the
c-v curve from the sweep

As an application of this model, let’s model the capacitance of a
reverse-bias diode. Note that for MOSFETs this may be the only
way to model Gate-to-Source capacitance without inserting an actual
diode in the model, which would not match the physics of the device.
In general such a capacitance is described by the following:

where v = v (anode,cathode). Substituting this in the equation for

f v() above we get

The schematic diodecap.DWG implements this model and compares
it with the actual capacitance measurement. To generate the
comparison plot below, a sweep needs to be run, plus a plot of the
measured ce. One can do a “send script” to IntuScope by right-
clicking on the appropriate script on the schematic.

There are a couple Trojans that corrupt or delete your
“AUTOEXEC.NT” file. As a result, when trying to run our
InstallShield installation, which makes use of 16-bit technology, an
error message will be displayed as follows:
 "16 bit Windows Subsystem -C:\WINDOWS\SYSTEM32\AUTOEXEC.NT.
The system file is not suitable for running MS-DOS and Microsoft
Windows applications. Choose 'Close' to terminate the application."

“AUTOEXEC.NT” Installation Problem

C
CJO

v
Vj

m
=

-()1

f v
CJO

v
V

dv v
CJO V

m
v

V

j

m

j

j

m() (
()

)
*

()
()()= -

-
= +

-
-Ú -1

1 1
1 1

Figure 15: Comparing diode capacitance models

1 ce 2 c

1.00 3.00 5.00 7.00 9.00
sweepdef in volts

100p

300p

500p

700p

900p

ce
, c

 in
 fa

ra
ds

P
lo

t1

12

15

Keep in mind that even though this message comes up, worst yet,
the AUTOEXEC.NT file may actually be missing. So, verify that
you have the file by typing "%windir%\system32" in the address
bar of the Explorer window. If there is no AUTOEXEC.NT file, then:

1. Browse to "%windir%\repair"
(usually "C:\WINDOWS\repair")

2. Right-Click and Copy the AUTOEXEC.NT file
3. Browse to "%windir%\system32"

(usually "C:\WINDOWS\system32")
4. Right-Click inside the window and Paste the file

The installation will now work. We recommend you install the
following free software to prevent this from happening again:
SpyBot Search & Destroy, Ad-aware PE, SpywareBlaster, SpywareGuard,
IE-SPYAD, and spywareguide’s "Spyware Block List File."

How to Use ICL Variables
ICL (Interactive Command Language) uses variables to control the
IsSpice4 simulator options and corresponding output data options.
A variable is manipulated with the ICL set or foreach command. The
variable value is accessed by placing $ in front of the variable name.

All .OPTIONS parameters are automatically considered variables.
All other predefined variables are listed with the set command in the
“script syntax” help, or IsSpice4 Users Guide manual.

Here is an example that manipulates predefined variables.
set temp=125 ;set global circuit temperature to 125 degree C
set units=degrees ;set trig function units to degrees

Now, if you want to sweep through a list of values, you can use the
foreach command. The foreach command does the commands
between the "foreach" and the "end" lines, once for each value listed.
When the loop starts over, the variable becomes the next value in the
list. Reference the foreach variable in your command scripts by
placing a $ in front of the variable name.

Foreach Syntax:
foreach variable value1 value2 ... valuen
 ..commands..
end

Foreach Example:
foreach r1 1k 3k 10k
alter @r1[resistance] = $r1
tran 1n 100n
print @r1[resistance]
end

http://www.intusoft.com/script/pages/commands3.htm#set
http://www.safer-networking.org/
http://www.lavasoft.de/software/adaware/
http://www.javacoolsoftware.com/spywareblaster.html
http://www.javacoolsoftware.com/spywareguard.html
https://netfiles.uiuc.edu/ehowes/www/resource.htm
http://www.spywareguide.com/blockfile.php

	Transfer Function Analyzer
	Using the TFA
	Divide by Zero revisited
	PFC Average Models
	A Nonlinear Capacitor Model For SPICE
	“AUTOEXEC.NT” Installation Problem
	How to Use ICL Variables

