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1. What we know already

Electronic feedback systems are usually designed with the familiar single-loop block diagram

of Fig. 1 in mind.

Fig. 1. Conventional single-loop block diagram of a feedback system.
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This model predicts that the closed-loop gain H ≡  u
o
/u

i
 is given by

H
A

AK
=

+1
(1)

where A is the forward (open-loop) gain, K is the feedback ratio, and T is the loop gain defined by

T AK≡ (2)

Consider the simplified model of a typical two-stage transistor feedback amplifier shown in Fig. 2.

Fig. 2. A simple equivalent circuit model of a two-stage voltage-to-voltage feedback amplifier.

We can see immediately that this model is not completely represented by the block diagram of Fig.

1. Equation (1) says that if A goes to zero, H goes to zero; however, in Fig. 2 if g
m2

 and C
2
 go to

zero, the output u
o
 does not go to zero because the input u

i
 can reach the output by going through

the feedback path in the “wrong” direction.

This nonideality of the real circuit is not accounted for in Fig. 1 because the blocks are

defined to be unidirectional, which is the reason they are drawn as arrowheads rather than as

rectangular boxes. However, this nonideality can be accommodated by augmenting the block diagram

with another block as in Fig. 3, where H
0
 represents the direct forward transmission.
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Fig. 3. The block diagram of Fig. 1 augmented by a block that represents direct forward

transmission. It is identical to the “natural” block diagram that is the result of

application of the GFT to an equivalent circuit model.

Figure 3 predicts the presence of an added term in the expression for the closed-loop gain H:

H H
T

T
H

T
=

+
+

+∞ 1

1

10 (3)

in which a new quantity H• is introduced:

H
K∞ ≡ 1

(4)

The seemingly trivial substitution of H• for 1/K is actually very valuable, because it enables

an interpretation of (3) that discloses much useful information. Equation (3) says that the closed-

loop gain H of a feedback system can be expressed as the weighted sum of two components, one

containing H• which would be the gain if the loop gain T were infinite, and the other containing H
0

which would be the gain if T were zero. Thus,

H H T∞ ≡ → ∞| (5)

H H T0 0≡ →| (6)

can be considered as definitions. It follows that H is dominated by H• when T is greater than 1, and

is dominated by H
0 

when T is less than 1.
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The objective of designing a feedback system is to make T large enough that H is dominated

by H• and the H
0
 contribution is negligible, over the useful frequency range.

A further interpretation of the expectedly dominant term in (3) is that H• is the ideal closed-

loop gain and

D
T

T
≡

+1
(7)

is the discrepancy factor because it is the factor by which the actual closed-loop gain H deviates

from the ideal closed-loop gain H•.

Another useful version of (3) arises from combining the two terms into one:

H
H T H

T
H

H
H T

T

= +
+

=
+

+
∞

∞
∞0
11

1

1

0

or

H H
T

T

n=
+

+
∞

1
1

1
1 (8)

where

T

T

H

H
n = ∞

0
(9)

In the derivation of the GFT in [1], T
n
 is identified as the null loop gain, which in turn suggests the

definition of a null discrepancy factor

D
Tn

n
= +1

1
(10)

In summary, a “first level” transfer function (TF) such as the closed-loop gain H can be

expressed in terms of three out of four “second level” TFs H•, T, T
n
, and H

0
. Because of the

redundancy relation (9), the four versions each omits one of the four second level TFs. The two

versions useful for the present purposes respectively omit T
n
 and H

0
, and are:

H H
T

T
H

T
H D H D=

+
+

+
= + −∞ ∞1

1

1
10 0( ) (11a, 11b)

H H
T

T

H DDn
n=

+

+
=∞ ∞

1
1

1
1 (12a, 12b)
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Although H
0
 represents nonidealities physically identified in Fig. 3, their alternative

representation by T
n
 has two advantages. First, in (12) D

n
 appears as a multiplier factor within H,

and therefore for the nonidealities to be negligible D
n
 must be close to 1, or equivalently T

n
 must be

much larger than 1; on the other hand in (11) H
0
 appears in an additive term, and to be negligible,

H
0
 must be much smaller than H•T which is a more complicated comparison. Second, in symbolic

circuit analysis, T
n
 is usually a much simpler and shorter calculation than is H

0
.

The job of a designer, as distinct from that of an analyst, is to construct hardware that meets

certain specifications within certain tolerances. If you are designing a feedback amplifier, you

effectively proceed through four steps:

Design Step #1. Design the feedback network K = 1/H• so that H• meets the specification;

Design Step #2. Design the loop gain so that T is large enough that the actual H meets the specification

within the allowed tolerances;

Design Step #3. Since in any real system T drops below unity beyond some “crossover” frequency,

design T to be large enough up to a sufficiently high frequency. In an ac coupled system, a dual

condition occurs in the reverse frequency direction. Usually, #3 is the most difficult step.

Design Step #4. Design the null loop gain so that T
n
 is large enough, or the direct forward

transmission H0 is small enough, that the actual H meets the specification within the allowed

tolerances.

Although not explicitly stated, Design Step #3 includes the stability requirement. The

discrepancy factor Dª1 when T >> 1, and DªT when T << 1; the transition between these two

ranges, which is not necessarily a monotonic decrease, occurs at the loop gain crossover frequency

wc, the frequency at which |T| = 1. If the phase margin of T is less than about 60°, D begins to peak

up in the neighborhood of the crossover frequency, and in the limit of zero phase margin the peak in

D becomes infinite, which marks the onset of instability. Therefore, the discrepancy factor D must

not be allowed to peak up beyond the tolerance limit of the specification, which is a much more

stringent design requirement than mere “stability”.
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2. Injected test signals

Although the second level TFs are derived quantities defined in terms of the blocks in Fig.

3, in looking ahead to evaluating them on a circuit diagram we find it useful to see how they could

be determined individually by direct virtual measurements on the block diagram of Fig. 3. We want

to do this by signal injection, without disturbing the circuit configuration and therefore without

disturbing the circuit determinant.

The most important second level TF (and also the simplest) is the ideal closed-loop gain

H•. The actual closed-loop gain falls short of H• because the error signal, which is the difference

between the input signal u
i
 and the fedback signal Ku

o
, is not zero when the loop gain T is not

infinite. A test signal u
z
 can be injected so as to add to the error signal, as in Fig. 4.

Fig.4.Injection of a test signal u
z
 so as to add to the error signal in the block diagram of Fig. 3.

The injected signal can be adjusted so as to null the error signal -u
y
, which makes Ku

o
 exactly equal

to u
i
 so that the closed-loop gain is 1/K which is H•. Thus, H• can be directly measured under the

null double injection condition shown in Fig. 5.
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Fig. 5. Null double injection calculation of the ideal closed-loop gain H• by mutual adjustment

of the injected signal u
z
 and the input signal u

i
 to null the error signal –u

y
, which simulates

infinite loop gain.

The result can be written

H
u

u
o

i uy

∞
=

=
0

(13)

It’s worth going through this process again. Initially, u
z
=0 and the system is in the normal

closed-loop condition with a given input signal u
i
 so that the output is u

o
=Hu

i
. As u

z 
is increased,

the output rises, causing more signal to be fed back, and decreasing the error signal -u
y
. When -u

y

has been reduced to zero, the output has risen to H•u
i
, the value it would have if the loop gain were

infinite.

Note that H• is determined under a condition of simulated infinite loop gain, in accordance

with (5): when the error signal u
y
 is nulled u

x
, which is then equal to u

z
, drives the output to the

value necessary to make Ku
o
 equal to u

i
. Thus, the forward gain appears to be infinite, although the

output is actually being driven by the “hidden” test signal u
z
.

Null double injection is a very powerful tool, for numerical as well as for symbolic analysis.

In general, two independent signals are mutually adjusted in order to null a designated dependent

signal. The purpose is to determine a special value of a certain TF that exists under this null condition.

In the present case, the purpose is to determine the special value of H, defined as H•, that exists

under the condition of nulled error signal -u
y
.

There are two important features of null double injection. One is that the system determinant

is not disturbed, because only system signals are manipulated. The other is that determination of
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the required answer, the TF under the specified null condition, is VERY EASY because we don’t

need to know the value of the injected test signal, we need to know only that the resulting null

exists. In the present case, we use the existence  of the null condition -u
y
=0 to conclude that the

fedback signal exactly equals the input signal, which immediately sets up the required result (13).

If you are not familiar with the term “null double injection,” you may be surprised to learn

that you’ve actually been doing the corresponding calculation all along. The conventional procedure

for Design Step #1 is to assume that the error signal is vanishingly small, which makes the fedback

signal approximately equal to the input signal, and hence makes the closed-loop gain approximately

equal to 1/K. But this is exactly the same calculation that is the culmination of the null double

injection procedure described above. So, you’ve actually been doing the null double injection

calculation all along, by assuming infinite loop gain instead of simulating infinite loop gain, the

result of which is H• and not H.

If, as is commonly the case, K is a resistance divider, H• is flat to infinite frequency even

though the actual H falls off because of the declining discrepancy factor D=T/(1+T). At increasing

frequencies, the injected test signal u
z
 has to be increased in order to maintain the output H•u

i
 flat

in spite of decreasing loop gain.

All four second level TFs can be determined by various manipulations of the two injected

signals in Fig. 3, without disturbing the circuit determinant.

After H•, the next most important second level TF is the loop gain T. From the definition

(2), the loop gain is that experienced by a signal such as u
x
 that starts around the loop and arrives as

a signal u
y
 at the other side of the injected test signal u

z
, under the condition that the input signal u

i

is zero, as illustrated in Fig. 6.

Fig. 6. Single injection calculation of the loop gain T.
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The input signal u
i
 is not nulled, it is set to zero, and so the result emerges from a single injection,

not a null double injection, calculation:

T
u

u
y

x ui

≡
=0

(14)

To measure the direct forward transmission gain H
0
, we invoke the interpretation (6) that

H
0
 is the gain when the loop gain T is zero. Just as H• is measured by simulating infinite loop gain,

H
0
 is measured by simulating zero loop gain in Fig. 4. This is done by adjusting  the injected test

signal u
z
, in the presence of u

i
, to null u

x
. This is shown in Fig. 7, whose interpretation is that if u

x

is zero the only way the input signal u
i
 can reach the output u

o
 is through the H

0
 block.

Fig. 7. Null double injection calculation of the direct forward transmission gain H
0
 by mutual

adjustment of the injected signal u
z
 and the input signal u

i
 to null u

x
, which simulates

zero loop gain.

So, the direct forward transmission TF emerges from another null double injection calculation as

H
u

u
o

i ux

0
0

≡
=

(15)

It may not be immediately obvious, but the null loop gain T
n
 can also be found from Fig. 4

by yet another null double injection calculation in which u
z
 is adjusted in the presence of u

i
 to null

the output signal u
o
, as in Fig. 8.
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Fig. 8. Null double injection calculation of the null loop gain T
n
 by mutual adjustment of the

injected signal u
z
 and the input signal u

i
 to null the output signal u

o
.

The null loop gain T
n
 is then

T
u

un
x u

y≡
=0 0

(16)

The interpretation is as follows. The output u
o
 is the sum of Au

x
 = H•Tu

x
 and H

0
u

i
. If the output is

nulled, H•Tu
x
=-H

0
u

i
. But there is no fedback signal, so -u

y
=u

i
 and H•Tu

x
=H

0
u

y
, which leads to

(9), and so justifies the interpretation of T
n
 as the null loop gain.

All the familiar properties of feedback are expressed in (11) or (12), which relate to the

block diagram of Fig. 3. The first level TF, the closed-loop gain H, is expressed in terms of three of

the four second level TFs which can be determined from (13) through (16) by injection of a test

signal u
z
 that sums with the error signal.

The next step is to relate the block diagram of Fig.  3 or 4 to an actual equivalent circuit

model of the system under consideration. This is where difficulties begin to emerge: the conventional

approach attempts to identify the three blocks as containing distinct parts of the circuit, but this is

only true in simple cases. Usually interactions between blocks (loading) impose approximations

upon the resulting block gains, especially at high frequencies which is just where accurate results

are most desired. This approach is effectively dealt a coup de grâce by the presence of nonzero

admittances across active-device dependent generators, which introduce not only local feedback

paths but also an additional  bidirectional signal path in the forward gain block A. Such nonzero



11

admittances result from C
1
 and C

2
 in Fig. 2, which create considerable analytical difficulties even

in such a simple circuit.

The General Feedback Theorem (GFT) avoids all these difficulties by bypassing  the initial

step of trying to relate each block individually to distinct parts of the circuit. Instead, the blocks in

Fig. 3 are evaluated from (13) through (16) by test signals injected into the complete circuit whose

determinant remains undisturbed at all times.

3. The General Feedback Theorem (GFT)

In the “bottom up” approach to feedback analysis described above, the starting point is a

block diagram intended to preserve the concept of a single loop describing a forward path and a

feedback path. The accuracy of the results depends on how well the blocks represent the actual

circuit configuration.

In contrast, the GFT provides a “top down” approach in which the starting point is the

actual equivalent circuit model and a block diagram is the result.  This block diagram is exactly the

same as in Fig. 3, which therefore may be called a “natural” block diagram because it represents

any transfer function of any linear circuit model, regardless of whether there is any identifiable

“feedback path” or not.

Since the two approaches have the same block diagram, they also have the same relations

(11) and (12) between H, the first level TF, and the four second level TFs H•, T, T
n
, H

0
, repeated

here:

H H
T

T

H DDn
n1

1
1

1
1

=
+

+
=∞ ∞ (17a, 17b)

H H
T

T
H

T
H D H D2 0 01

1

1
1=

+
+

+
= + −∞ ∞ ( ) (18a, 18b)

The designators 1 and 2 are used to distinguish the results calculated from different

arrangements  of the second level TFs, or different “dissections” of the first level TF H, and henceforth

the unadorned H will be reserved for the first level TF measured directly with no test signal injection,

as would be done in a normal ICAP/4 calculation. The order of the two forms is reversed because

H
1
 is the form that first emerges from the GFT derivation and therefore has the most direct relationship

to the equivalent circuit model.  Consequently, H
1
 is designated the “natural” form of the GFT and

H
2
, and others still to be introduced, are designated as “derived” forms. Likewise, the redundancy

relation (9) is also reversed:

H

H

T

Tn

0

∞
= (19)
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In the previous section, it was shown how the four second level TFs could in principle be

evaluated by injection of a test signal u
z
 into the block diagram. The difficulties arise when we try

to implement these calculations on the actual circuit diagram instead of on the block diagram. In

particular, is u
z
 a current or a voltage source?

The answer is that, in general, u
z
 is both a current and a voltage source, and the GFT provides

extensions of (13) through (16)  by which the four second level TFs can be derived from 12 third

level measurements made under various single, null double, and double null triple, injection

conditions established on the circuit model.

These extension formulas are needed if you want to do symbolic analysis of the circuit

model . However, if you want only numerical results, you can ignore these formulas — the ICAP/

4 GFT Template does it all for you, so the extension formulas are not displayed here, but are listed

in full in the Appendix.

The only decisions you have to make are which is the appropriate test signal injection

configuration, and how to connect it to the circuit. After the program has been run, the second level

TFs are available for display in Intuscope, as are the discrepancy factors  D from (7) and D
n
 from

(10), and the calculated closed-loop gains H
1
 from (17) and H

2
 from (18). The derived results H

1

and H
2
 should be the same, and as a final check both should be the same as H measured directly on

the circuit without any injected test signals, which is also available in Intuscope.

The GFT is completely general, the only condition being that it applies to a linear system

model. Any number of injected test currents and/or voltages can be employed at the same or different

places in the circuit model. The GFT Template incorporates up to two injected test signals in any

combination. A “test signal configuration” is defined by what test signals are employed, and where

they are injected into the circuit model.

A particular test signal configuration produces a corresponding set of second level TFs H•,

T, T
n
, H

0
, which, when inserted into the GFT (17) or (18), gives the first level TF H. Although all

test signal configurations give the same H, the sets H•, T, T
n
, H

0
 may be different.

The objective of establishing the block diagram of Fig. 3 is to interpret each block in terms

of distinct circuit functions which in turn can be identified in terms of circuit elements. If you make

an arbitrary choice of injection configuration,  the resulting set of H•, T, H
0
, T

n
 won ‘t mean

anything and so will be useless for informed design-oriented analysis, even though if you insert it

into the GFT you get the “correct” answer. For example, the result for T may be completely

unrecognizable as the “loop gain” you thought you had built into the circuit.

Therefore, the crucial step in applying the GFT is to choose a test signal injection

configuration that does  produce the set H•, T, T
n
, H

0
 with the desired interpretation. In many

cases, the desired result is that H• be equal to 1/K, the reciprocal of the feedback network
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transmission, and the corresponding H•, T, T
n
, H

0
 set is referred to as the principal set, which

contains the principal loop gain T. Other sets, containing different T’s, are not “wrong,” they just

aren’t useful for the same purpose.

So, how do we choose an injection configuration so that H• equals 1/K? This is simply an

extension of the process set up in Fig. 5 that led to (13).

The starting point is an extension of the block diagram of Fig. 3 to incorporate two things:

identification of the generalized signals u as being currents, or voltages, or both; second, recognition

that in general the A and K boxes are each bidirectional and so are drawn as rectangles instead of

arrowheads, as in Fig. 9.

Fig. 9. Selection of a test signal injection configuration that sets up H•=1/K.

Step 1: Identify the feedback network in an equivalent circuit model.

The input and output signals have been rewritten as v
i
 and v

o
 so that H=v

o
/v

i
 is a voltage-to-voltage

gain. You may wish to visualize the two blocks as containing the circuit of Fig. 2, but to make the

discussion more concrete only the feedback divider will be shown explicitly, as in Fig. 10.
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Fig. 10. Step 2: The error signal u
y
 has to be identified as both a voltage v

y
 and a current i

y
.

The criterion is that the test signal is to be adjusted so that the error signal is nulled, which makes

the fedback signal exactly equal to the input signal, which in turn sets up H = H•. In Fig. 10, the

fedback signal is [R1/(R1+R2)]v
o
, so for this to be equal to the input voltage v

i
, the error signal

must be identified as the voltage v
y
 shown in Fig. 10.

However, it is not sufficient for v
y
 to be nulled. For the fedback voltage to be [R1/(R1+R2)]v

o
,

there must be no current drawn from the divider tap. Therefore, the error signal must also be identified

as the current i
y
 shown in Fig. 10.

The bottom line is that, in a circuit such as Fig. 10, to set up H• to be equal to (R1+R2)/R1,

both the error voltage v
y
 and the error current i

y
 must be nulled. This requires that the injected test

signal u
z
 also be both an injected current j

z
 and an injected voltage e

z
, as in Fig. 11.
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Fig. 11. Step 3: The injected test signal u
z
 has to be both a voltage e

z
 and a current j

z
, both of

which have to be mutually adjusted relative to u
i
 to null both error signals v

y
 and i

y
.

This is a double null triple injection condition.

The result is

H
v

v
Ho

i i v
i v

y y

y y∞
=

= =
, 0

(20)

where the second version is merely a shorthand version of the first, and the test signal injection

conditions have been purposely set up to make H• equal to the required (R1+R2)/R1.

We see that a test signal may be both a current and a voltage source, and that both test

sources need to be adjusted relative to a given input signal in order to null both an error voltage and

an error current. This is a condition of double null triple injection, in which three independent

sources are mutually adjusted to null two dependent signals. This is just as easy as a null double
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injection calculation. You don’t need to know what the values of the sources are, you need to know

only that the two nulls exist, because this is equivalent information and is sufficient to deliver the

required answer.

The procedure for using the GFT Template will be illustrated below through a series of

examples, the first of which is taken from [1].

   3.1 Example 1: 2-stage voltage-to-voltage feedback amplifier

The circuit of Fig. 2 is redrawn in Fig. 12 with a slight modification. Each FET model is

replaced with an equivalent model that  represents either an FET or a BJT, depending respectively

on whether a = 1 or a < 1.

Fig. 12. The equivalent circuit model of Fig. 2 redrawn to resemble the model of Fig. 11, with

the error signals v
y
 and i

y
 identified.
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Draw this  circuit in the SpiceNet window, and go to PartsÆPartBrowserÆPart TypesÆGFT.

Under Sub Types, select the one that corresponds to the required transfer function H in this circuit,

which is Voltage Gain (voltage-to-voltage).

We already know that the principal set of second level TFs H•, T, H
0
, T

n
 (the set with H•

made equal to 1/K) is produced by both current and voltage test signal injection in the configuration

of Fig. 11, so in the Voltage Gain Parts List select GFTv, coupled voltage, current injection. Place

the icon in the SpiceNet circuit diagram. In the Subcircuit properties window, re-name the Ref Des

as xgft.

Connect the necessary wires, either directly, or by use of Continuations as in Fig. 13. Note

that the u
i
 pair in the icon replaces the normal input signal source. This is because the GFT Template

has to adjust the input signal together with the nulling conditions in order to measure the 12 third

level TFs. The zero voltage source V3 is there merely to preserve the distinction between the nodes

uu
i
 and W. The element values are those from the example in [1], with a=1 and Rs=1n, essentially

zero.

The model of Fig. 13 is ready made in spice8\circuits\gft\figure13.dwg

Fig. 13. Insertion of the GFT Template icon GFTv into the model of Fig. 12.  Running the

program simulates twelve second level TFs and calculates the four second level TFs H•, T, T
n
,

H
0
, together with the simulation of the normal closed-loop first level TF H.
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You are now ready to run the GFT Template. Open Intuscope, and go back to the SpiceNet

window. Click ActionsÆICAPS... Select Config 1 + Setup 1, and in the Mode area select ‘GFT’.

Make sure the Script box is checked in the Data Reduction area. Click Simulate Selections, and

answer Yes to the query. The simulation now runs.

Go to Intuscope. In the Add Waveforms window, select ‘result’ in the Type box in the Source

area. All the TFs appear in the Y Axis box, and can be displayed in dB and phase on the Graph.

Alternatively, all the TFs in (17) and (18) can be displayed in both dB and phase by clicking

CalculatorÆGFT.

Some of the results are shown in Fig. 14. The first result to check is that H• is flat at 20dB

at all frequencies, confirming that H• = 1/K=(R1+R2)/R1 and that the H•, T, T
n
, H

0
 set is indeed

the principal set, so the proper test signal injection configuration was in fact chosen. If H• is not

equal to the expected result, something is wrong and all the results should be ignored until the

problem is fixed.

Next, note that five other TFs are displayed, but only three are visible. This confirms that

the derived first level TF H
1
 and H

2
 calculated from (17) and (18), respectively, are indistinguishable

from the directly measured H. This Figure appears in [1], together with interpretation and discussion

of the agreement with the symbolic results.

1 hdb 2 tdb 3 tdbn 4 hdb1 5 hdb2 6 hdbinf

100 10k 1Meg 100Meg 10G
frequency in hertz

-80.0

-40.0
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40.0

80.0
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 td
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, h
db

1,
 h

db
2,

 h
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f

P
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t1

1

2

3

45

6

Fig. 14. Some of the Intuscope results for Fig. 13. Check that H•=1/K=(R1+R2)/R1, as expected.

The calculated closed-loop gain H
1
 and H

2
 are indistinguishable from the directly simulated

H. The loop gain T crosses over on a single -20dB/dec slope. The null loop gain T
n
 is not

negligibly large at all frequencies.
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At first sight you might think that the apparent peaking in H results from inadequate phase

margin, but this is not the case. The correct explanation is that the crossover frequency of T
n
 is

lower than that of T, which causes D
n
 to increase before D decreases, as seen in the constituents of

H
1
 shown in Fig. 15.

Fig. 15. The closed-loop gain H dissected into the product of two constituents H•••••D and D
n
,

according to (17b).

The constituents H•D and H
0
D

o
 of H

2
 in Fig. 16 confirm that the nonidealities, whether

represented by H
0
 or by T

n
, take over above the null loop gain crossover frequency.
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Fig. 16. The closed-loop gain H dissected into the sum of two constituents H•D and H
0
(1-D),

according to (18b).

4. Manipulations of the natural block diagram

Equations (17) and (18) describe the closed-loop gain H dissected into two different sets of

constituents, and correspond to the natural block diagram of Fig. 3. Other dissections are possible,

a common one being the elimination of the H
0
 block by modifying one or both of the remaining

blocks in such a way as to preserve the same answer for H.

One possible choice is to keep the K block the same and incorporate the H
0
 block (in terms

of T
n
) into a modified forward gain block, as shown in Fig. 17.

Fig. 17. Absorption of the block H
0
 into a pseudo forward gain block that creates a pseudo

loop gain T
p
 that contains both T and T

n
.
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This model has a closed-loop response

H H
T

T
H DP

P
P3 1

=
+

=∞ ∞ (21)

where T
p
 is a “pseudo loop gain” defined by equating (21) with the GFT of (17),

T T
T
T
T

P
n

n

≡
+

−

1
1

1
(22)

and

D
T

TP
P

P
≡

+1 (23)

Graphs of T
p
 and D

p
 are shown in Fig. 18.

Fig. 18. The closed-loop gain H dissected into the product of two constituents H••••• and D
p
=T

p
/

(1+T
p
). The pseudo loop gain T

p
 has poor gain and phase margins that do not imply imminent

instability.
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The reason we want to dissect the closed-loop gain H into its constituent parts is to be able

to adjust the circuit element values in order to meet the specifications and  optimize the design.

This is usually an iterative procedure, lubricated by both symbolic and numerical analysis, as done

for Example 1 of Fig. 13 here and in [1]. It is obviously advantageous to have the second level TFs

expressed in terms of as few as possible intuitive single-path signal flows. This is the case for H, T,

and T
n
, and so the GFT form H

1
 of (17) has the closest relation to the equivalent circuit elements.

However, H
0
 involves certain loop gains as well as single-path signal flows from u

i
 to u

o
 (see

Appendix), and so the GFT form H
2
 of (18) is not quite so closely related to the circuit elements.

The GFT form H
3
 of (21) , which describes the apparently simpler block diagram of Fig.

17, is even further removed from intuitive interpretation in terms of circuit elements, which is not

surprising considering the tortuous definition (22) of the pseudo loop gain T
p
. Thus, although in

Fig. 18 the results for H and H
3
 are correct, it is hard to relate the shapes of T

p
 and D

p
 to the

physical operation of the circuit.

Although the ICAP/4 GFT Template makes it very easy and fast to graph all sorts of TFs,

you have to be very clear as to what are the meanings of the second level TFs you are calculating.

ICAP/4 Intuscope shows that the loop gain T displayed in Fig. 14 has a very docile phase margin of

87° and a gain margin of 52dB, far from instability; on the other hand the pseudo loop gain T
p

displayed in Fig. 18 has a much smaller phase margin of 45° and a gain margin of only 0.2dB,

which might be taken incorrectly as a red flag that the system is on the brink of instability.

The conclusion is that you are probably better off to deal with the natural block diagram of

Fig. 3 rather than the deceptively simpler one of Fig. 17. A block diagram with fewer blocks implies

that the blocks are described by more complicated expressions, which can be counterproductive in

design-oriented analysis. Indeed, the opposite is one of the principles of Design-Oriented Analysis:

“divide and conquer,” or, make more simpler blocks rather than fewer complicated blocks.

In the SpiceNet PartBrowser there is a GFT Sub Type called Loop Gain, which is a short cut

to obtaining only the T result.
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Fig. 19. The model of Fig. 13 showing other possible injection configurations WXY, and an

optional icon GFTs that provides calculations only of T.

Figure 19 shows the same circuit as Example 1, but with the Loop Gain icon GFTs alternative to the

GFTv icon. There are no input and output signal connections to the Loop Gain icon, so don’t forget

to set uu
i
=0 by connecting uu

i
 to ground. The injection configuration is the same as that in Fig. 13

if WXY are identified as W
2
X

3
Y

3
 (you have to break the X

3
Y

3
 connection in order to insert either

the GFTv or the Loop Gain icon, of course).

To run this configuration, select GFTs instead of GFT in the Simulation Control window,

and in IntuScope  select Calculator GFT T. The dB and phase of T are displayed, plus the phase and

gain margins are explicitly identified. The results for T are the same as when the GFTv icon is

employed.
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As already mentioned, different injection configurations produce different sets of second

level TFs H•, T, T
n
, H

0
, although in some cases T may be the same. For example, if the GFTv or the

Loop Gain icon is inserted in Fig. 19 at W
1
X

1
Y

1
 or at W

1
X

2
Y

2
, T remains the same as for the

original insertion point W
2
X

3
Y

3
 because the test signals e

z
 and j

z
 are being injected inside the

major loop but outside the minor loops in such a way that the major loop is broken if either e
z
 is

opened or j
z
 is shorted. Thus, T is still the principal loop gain. However, the other second level TFs

are different, and in particular H• is no longer flat at all frequencies.

On the other hand, if the GFTv or Loop Gain icon is inserted in Fig. 19 at W
1
X

5
Y

5
, none of

the second level TFs is the same because the test signal injection is now inside a minor loop.

   4.1 Example 2: Output impedance of the 2-stage amplifier

In the PartBrowser GFT Sub Types, besides the GFTv there are three others, GFTi, GFTg,

and GFTh, for use when the first-level TF H of interest is a current gain, a transadmittance, or a

transimpedance. The procedure for use is exactly the same as for the voltage gain.

There are other uses for the Sub Types, which is to calculate TFs other than the one that

describes the “gain” of the system. For example, the circuit of Fig. 13 represents a voltage-to-

voltage amplifier, but you may also be interested in its output impedance Z
o
.  Output impedance is

a special case of transimpedance, and the GFTh icon can be employed with the “output” signal still

being the output voltage, but the “input” signal is an independent current driven into the output

terminals.

Figure 20 shows the first level TF H set up to represent the output impedance Z
o
, which is

ready made in spice8\circuits\gft\figure20.dwg
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Fig. 20.  Replacement of the GFT Template icon GFTv in the model of Fig. 13 by GFTh for

calculation of the output impedance as a self-impedance H whose “output” is the voltage

uu
o
 and whose “input” is the current uu

i
.

The injection configuration is the same, because we want T still to be the principal loop gain. and

the only differences from Fig. 12 are that the icon is GFTh instead of GFTv (don’t forget to rename

it xgft), and uu
i
 is connected to uu

o
 with the original uu

i
 grounded. The zero voltage source V6 is

there to preserve the distinction between the uu
i
 and uu

o
 terminals.

The H• for Fig. 20 is zero, as can be seen by doing the null double injection calculation for

the output impedance with i
y
 and v

y
 nulled: if v

y
 is nulled, there is no voltage across R1; if i

y
 is also

nulled, there is no current in R2, and so vL is also zero. Thus, e
z
 and j

z
 have been adjusted so that

the entire independent driving current u
i
 goes “backwards” into the forward path, leaving none to

go down the feedback divider. The result H• = H|TÆ• = 0 is consistent with the basic interpretation

that voltage feedback reduces an amplifier’s output impedance, so infinite loop gain would reduce

the output impedance to zero.
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Consequently, H
1
 of (17) cannot be used, but H

2
 of (18) is available, and reduces to

H H
T

H D2 0 0 0
1

1
=

+
= (24)

 in which H
0
 = H|TÆ0 is interpreted to be the open-loop output impedance . At low frequencies, by

inspection of Fig. 20, this is seen to be

H R R rm k0 2 1 1 9 048= + =// . (25)

The dissected constituents are shown in Fig. 21, in which the calculated H
2
 is seen to be identical to

the directly measured H.

Fig. 21. Dissection of the output impedance H into the product of two components H
0
 and

(1-D) according to (24). The H••••• term is zero.

The vertical axis is dB relative to 1 ohm, and at 100Hz H
0
 is displayed on Intuscope as

79.13dBfi9,047k, in complete agreement with the expected value. Because of the high loop gain,

the closed-loop value at low frequencies is much smaller, displayed on Intuscope as 7.51dBfi2.4

ohm.

4.2 Example 3: Emitter/source follower

In some circuits, the desired H• requires that only i
y
 or v

y
 be nulled, not both. An example

is the emitter/source follower of Fig. 22., which is ready made in spice8\circuits\gft\figure22.dwg.
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The inductance typically arises from the output impedance of a driver emitter/source follower in a

Darlington configuration. This circuit is well-known to be potentially unstable for certain values of

load capacitance CL.

Fig. 22. A source follower circuit, with 1/K=1. The error voltage v
y
 appears between input and

output, so nulling v
y
 is sufficient to set up the desired H=1/K=1, and the single injection icon

GFTve is appropriate.
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Even though we don’t usually think of this as a “feedback circuit,” the GFT of (17) or (18)

gives the gain H in terms of a “loop gain” T from which stability can be assessed. As usual, the

crucial question is what test signal injection configuration to adopt.

The purpose of an emitter/source follower is to provide unity voltage gain at all frequencies,

so H•= 1. However, because of finite transistor transconductance gm and various capacitances, the

discrepancy factors D and maybe D
n
 are not unity, and the actual voltage gain H is less than H•.

For an emitter/source follower, the error voltage is the difference between the input and

output voltage, because the fedback voltage is equal to the output voltage for H•= 1. Therefore, the

error voltage v
y
 is identified as in Fig. 22 and the test voltage must be injected between Y and X so

as to drive the transistor with the voltage v
x
. Adjustment of the injected voltage to null v

y
 is sufficient

to raise the output voltage to be equal to the input voltage, and so i
y
 need not be nulled. In fact, it

had better not be nulled, because i
y
 is the only current that produces the output voltage!

The appropriate GFT icon is GFTve, providing single voltage injection to a circuit in which

the first level TF H is a voltage-to-voltage gain, and is already installed in Fig. 22.

Fig. 23. Some of the Intuscope results for Fig. 22. Check that H•=1/K=1, as expected. The

closed-loop gain H exhibits a considerable peak.

After you run the GFT Template, as always the first result to check is that H• is in fact the

intended value. Figure 23 shows that indeed H•=0dB at all frequencies, but that H peaks up before

falling off. This is a red flag indicating inadequate phase margin, so we want to look at the magnitude

and phase of the loop gain T, as in Fig. 24.
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Fig. 24. The loop gain T for the source follower of Fig. 22 has negative phase and gain margins,

and so is unstable.

ICAP/4 Intuscope automatically presents the phase and magnitude margins as ØM = -15° and TM

= -7.0dB. These are both negative, and the circuit is actually unstable.

One of the main benefits of the GFT is that it enables you to relate the numerical results to

the circuit structure and element values, one of the important steps in the design-oriented analysis

strategy. So, let’s examine the second level TFs T and T
n
.

We can dismiss T
n
 quickly, because it’s infinite. The condition in Fig. 22 to set up the null

loop gain T
n
  is that there is a given input voltage uu

i
, and the injected voltage is adjusted to null the

output voltage uu
o
, which makes v

y
 = uu

i
. Also, i

y
=0 and i

x
=-i

y
=0, so there is no current driving the

transistor, and so v
x
=0. Hence, T

n
=v

y
/v

x
=uu

i
/0=•.

The condition in Fig. 22 to set up the loop gain T is that the input uui is set to zero, and the

injected voltage establishes v
x
 and v

y
. For single voltage injection i

x
=-i

y
 so T=v

y
/v

x
=Z

y
/Z

x
 where

Z
x
 and Z

y
 are respectively the impedances that the injected voltage source looks into at the X and Y

nodes. At zero frequency T=R1/rm =2,700/16=169fi44.5dB, in agreement with Fig. 24.

As frequency increases, |T| goes into a single negative slope (-20dB/dec) at the R1CL corner,

and eventually displays a double negative slope due to L1 and CL with an asymptotic phase of
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-180°. In between, however, T encounters a rather complicated transition consisting of a quadratic

pair of poles at the L1Cd resonance of 49MHz and a zero at the transistor ft=1/2pCdrm= 140MHz.

Thus, there is a region of triple negative slope between 49MHz and 140MHz that causes the phase

lag to exceed 180°. The |T| crossover frequency of 85MHz is within this range, and the phase

margin is negative.

The knowledge that T=Z
y
/Z

x
 provides insight into ways to make the circuit stable. For

example, beyond the R
1
CL corner, Z

y
=1/sCL and Z

x
 is independent of CL, therefore |T| is inversely

proportional to CL but /T stays the same. Therefore, increasing CL lowers |T| and moves the crossover

frequency lower such that the corresponding phase lag is less. Figure 25 shows the results of

increasing CL from 50p to 250p.

 

Fig. 25. Increase of the load capacitance CL from 50p to 250p causes a 14dB drop in |T| in the

neighborhood of crossover, but no change in /T in the same neighborhood. The circuit

is now stable.

The |T| graph is 250/50=5fi14dB lower, and the crossover frequency decreases to 42MHz where

the phase margin is +33°, and the gain margin is +7.0dB so that stability is achieved. There is still

peaking in H, but less than originally.
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APPENDIX

What the GFT is, and how the GFT Template works

The General Feedback Theorem (GFT) is a general network theorem that applies to any

transfer function (TF) of a linear system model. The purpose of the GFT is to dissect H, the “first

level” TF of interest, into several “second level” TFs H•, T, T
n
, and H

0
 so that insight can be gained

in to how the circuit elements contribute to the result.

The GFT is derived in [1] as an application of the Extra Element Theorem (EET), and has

two basic versions:

H H
T

T

n
1

1
1

1
1

=
+

+
∞ (A.1)

H H
T

T
H

T2 01

1

1
=

+
+

+∞ (A.2)

There is a redundancy relation between the four second level TFs:

H

H

T

Tn

0

∞
= (A.3)

The “natural” block diagram of Fig. A.1 represents either of the two basic versions of the

GFT, in which H = u
o
/u

i
 is the first level TF of interest. The input and output signals u

i
 and u

o
 can

represent any combination of voltages, currents, torque, angular velocity, etc.

    

    
  

    

  

Fig. A.1 The natural block diagram for any TF H dissected according to the GFT into three

out of four second level TFs H•••••, T, T
n
, H

0
 that are calculated directly from the circuit model.
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The natural block diagram obviously resembles a single loop feedback system, and is one

of the most common applications of the GFT.

The value of the GFT lies in the relationship between the second level TFs H•, T, T
n
, H

0

and the circuit elements. This is determined by the results of certain “third level” calculations on

the circuit model in the presence of one or more injected test signals. The “test signal configuration”

is defined by the number and type of injected signals, and where they are injected. Different test

signal configurations produce different sets of H•, T, T
n
, H

0
.

The GFT Template is limited to two test signals, and the typical configuration of Fig. A.2

shows a voltage e
z
 and a current j

z
 injected at the same nodes WXY, although in other configurations

these nodes are not necessarily the same for each test signal.

    
    

      

  

    

  

Fig. A.2 One example of injection of test signals e
z
 and j

z
 for determination of the third level

null double injection and double null triple injection TFs needed to calculate the second

level TFs.

The third level TFs simulated for the test signal configuration of Fig. A.2 are:

H
u

ui v
o

i i v
y y

y y

=
=, 0

(A.4)

and similarly for H
vyix

, H
iyvx

, and H
ixvx

;

T
i

ii v
x u v

y

y

i y

_

,

≡
=0

(A.5)

and similarly for T
i_vx

, T
v_iy

, and T
v_ix

;

T
i

ini v
x u v

y

y

y

_

,

≡
=0 0

(A.6)

and similarly for T
ni_vx

, T
nv_iy

, and T
nv_ix

.
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The interpretations are as follows. Although there are three independent sources u
i
, e

z
, and

j
z
 in Fig. A.2, only u

i
 appears explicitly. The constraint u

i
,u

y
=0 in (A5) means that u

i
 is set to zero,

and e
z
 and j

z
 are mutually adjusted so as to null the dependent signal v

y
; T

i_vy
 is the ratio i

y
/i

x
 under

the null double injection (ndi) condition of nulled v
y
.

The constraint u
o
,u

y
=0 in (A6) means that ui is restored, and all three independent sources

u
i
, e

z
, and j

z
 are mutually adjusted so as to null the two dependent signals u

o
 and v

y
; T

ni_vy
 is the

ratio i
y
/i

x
 under the double null triple injection (dnti) condition of nulled u

o
 and v

y
.

All four T’s are ndi calculations; all four Tn’s and all four H’s are dnti calculations.

There is lengthy discussion in [1 - 4] to support the contention that ndi and dnti symbolic

calculations are easy to make, in fact, easier than familiar single injection calculations. All are

single path calculations: you never have to know what the independent source mutual adjustments

are, you just follow the starting signal to the ending signal, incorporating along the way the condition

that certain signals are nulled. Often, if one signal is nulled, others are too, so the null “propagates.”

Any element that supports a nulled signal does not contribute to the result, which is therefore not

only easier to obtain, but simpler than if a null does not exist.

The GFT Template simulates null conditions by making the null self-adjusting.  Only one

independent source is retained, and the others are replaced by dependent sources driven by the

signals to be nulled. For example, the dnti simulation H
iyvy

 can be implemented as in Fig. A.3, in

which u
i
 is the retained independent source. The higher the “nulling gain,” the better the resulting

null. The default value is 1G.

Fig. A.3 Typical GFT Template algorithm for creation of self-adjusting nulls by use of high-

gain “nulling amplifiers.”
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In principle, it doesn’t matter which independent signal is retained, or which signal is nulled by

which nulling gain. Also, because of the happy circumstance that the nulling gains have infinite

bandwidth,  the nulling polarity doesn’t matter and no system instability is introduced.

The GFT Template simulates the twelve third level TFs in succession without interruption,

by invoking the “alter” feature to sequence the required ndi and dnti conditions. All twelve TFs,

along with the first level TF H simulated with no test signal injection, are available for magnitude

and phase display in Intuscope.

The GFT Template then calculates the second level TFs H•, T, T
n
, H

0
 according to the GFT

definitions derived in [1], and makes them also available for display in Intuscope:

H Hi vy y∞ = (A.7)

1 1 1 1

T T T Ti v v i ivy y

= + +
_ _

(A.8)

1 1 1 1

T T T Tn ni v nv i nivy y

= + +
_ _

(A.9)

H H
T

T
H

T

T
H

T

Tv i
i v

i v
v i

i v
iv

y x
y

y x
y

x x0 = + +
_ _

(A.10)

where

T T Tiv i v v iy x
≡ _ _ (A.11)

T T Tvi v i i vy x
≡ _ _ (A.12)

T T Tniv ni v nv iy x
≡ _ _ (A.13)

T T Tnvi nv i ni vy x
≡ _ _ (A.14)

T
vi

 and T
nvi

 do not appear in (A.7) through (A.10) because T
iv

 and T
vi

 should be equal and T
niv

 and

T
nvi

 should be equal, so (A.12) and (A.14) exist merely as computation checks. Also, H
0
 is calculated

from the redundancy relation (A.3), and should be equal to H
0
 calculated from (A.10).

The GFT Template Parts Browser, under GFT, lists four Subtypes, one for each of the four

first level TFs voltage gain, current gain, transimpedance, and transadmittance. Each of these has

an icon that requires connection to the input and output, and a selection from six combinations of

injected test signals. The one shown in Fig. A.2 represents Coupled voltage, current injection. Dual

voltage, current is the same, except that the WXY connections are different for the two test sources.

Dual voltage, voltage and Dual current, current have two like sources with different WXY

connections. There are also icons for Single voltage and Single current injection.
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The third level TFs required for the Single current test signal configuration are directly

equal to the corresponding second level TFs:

H H
u

ui
o

i i
y

y

∞
=

= ≡
0

(A.15)

T T
i

ii
y

x u oi

= ≡
=

(A.16)

T T
i

in ni
y

x u o

= ≡
=0

(A.17)

H H
u

ui
o

i i
x

x

0
0

= ≡
=

(A.18)

The third level TFs required for the Single voltage test signal configuration are the same, except

with v in place of i.

Regardless of which test signal configuration is employed, the result is a set of second level

TFs H•, T, T
n
, H

0
. The GFT Template then does various postprocessing calculations that define

some additional quantities useful in presenting various forms of the final result for H. These include

a “pseudo loop gain” T
p
 into which both T and T

n
 are absorbed, and three “discrepancy factors”

each of which is uniquely determined by T, T
n
, or T

p
. The postprocessing calculations can be

viewed in spice8\script\GFT.scp.

Finally, the GFT produces three versions of H, with numerical designators, to indicate which

form of the GFT is its origin.

H H
T

T

H DDn
n1

1
1

1
1

=
+

+
=∞ ∞ (A.19)

H H
T

T
H

T
H D H D2 0 0 01

1

1
=

+
+

+
= +∞ ∞ (A.20)

H H
T

T
H DP

P
P3 1

=
+

=∞ ∞ (A.21)

where

1

1

1 1

T

T

T T TP

n

n n
≡

+
−( ) (A.22)

D
T

T
≡

+1
(A.23) D

T0
1

1
≡

+ (A.24)
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D
T

Tn
n

n
≡ +1

(A.25) D
T

TP
P

P
≡

+1 (A.26)

Reminder

Different test signal configurations produce different sets of the second level TFs H•, T, T
n
,

H
0
. Even the same test sources, for example the Coupled voltage, current icon of Fig. A.2 produces

different sets for different connection nodes WXY, emphasized by writing (A.1) as

H H
T

T

H
T

T

n n=
+

+
=

+

+
=∞ ∞1

1

1

2
2

2

1
1

1
1

1
1

1
1

...
(A.27)

Although the constituent TFs may be different in each set, when they are assembled into (A.27)

they all miraculously produce the same H (if everything works properly; see Caveats below).

Therefore, even though the GFT Template does all the work, you are responsible for choosing

an injection configuration such that H•, T, T
n
, H

0
 have useful interpretations with respect to circuit

performance; otherwise, they are useless in design-oriented circuit analysis and you might as well

resort to the try-it-and-see approach.

Choice of injection configuration is the crucial step in implementing the GFT, which is why

it is emphasized in the preceding Examples.

Caveats

Some second level TFs H•, T, T
n
, H

0
 may be zero or infinite. Because the GFT Template

algorithm employs nulling gains that are necessarily finite, a zero or infinite result cannot be produced

although the incorrect Intuscope graph may superficially look legitimate.

Fortunately, it is easy to determine in advance whether a certain TF is zero or infinite, and

then you can avoid using a form of the result that depends upon that incorrect TF.

Example 2 exhibits a case in which H• = 0, and the reason is described. The version (A.20)

for H
2
 has to be used, and (A.19) for H

1
 gives a wrong answer because both H• and T

n
, which is

actually infinite, are simulated incorrectly. Likewise, the simulation of H
0
 from (A.10) is wrong,

and does not agree with the calculation from (A.3), as both should be zero. In Example 3, T
n
 is

infinite, for the reason described, and so D
n
 = 1.

In Example 1 T
i_vx

, T
v_ix

, T
ni_vx

, T
nv_ix

 are all infinite, which can be seen by following

arguments similar to that in Example 3. Consequently, all four simulations give incorrect results,

and T
iv

 is not equal to T
vi

 and T
niv

 is not equal to T
nvi

 as demanded by (A.11) through (A.14).

However, none matters because the T
iv

 and T
niv

 contributions to T and T
n
 in (A.8) and (A.9) are

negligible.


