
New Techniques for Failure Analysis and Test Program Design
by

C.E. Hymowitz, L.G. Meares, B. Halal
Intusoft P.O. Box 710, San Pedro CA 90733-0710, info@intusoft.com

I. Introduction
The reasons for improving the analog and mixed-
signal test program set design and Failure Mode
Effects Analysis (FMEA) process are well
documented [1-7]. For instance, identification of
chronic production faults, improved safety and
reliability through the analysis of difficult to test failure
modes, investigation of circuit failure mechanisms,
and excessive part stress could all benefit from
improved simulation software. Yet few specialized
software products currently exist to help define a
structured approach to analog and mixed-signal
circuit test procedures.

Testing is generally done to assure product
performance, but a specialized software tool can add
benefits in other ways. First, if it can identify failure
modes that aren’t tested, the designer will have found
either unnecessary parts or a flaw in the acceptance
test. In both cases, the quality of the product would
be improved. Another important task is the tracking
of component quality during production. Frequently,
a product will evolve as new revisions are introduced
and the product’s performance will drift away from
its design center. This deviation is observable from
the acceptance test results, but software could also
allow the designer or test engineer to track the
nearby failures, including parametric failures. Lastly,
a common design and test development tool would
be useful in bridging the link, and frequently the
information gap, between the design and test
engineering departments.

II. Problems With Sensitivity Based Failure
Analysis Techniques
When SPICE performs a simulation, it uses a
matrix formulation of the form: [G] ∗ [V] = [I]
where [G] is an admittance matrix, [V] are the
node voltages and [I] is the current matrix. The
details of the implementation augment these
matrices to account for the voltage sources. It
turns out that a very simple mathematical
transform can yield the sensitivity of any element
in [V] with respect to every parameter in [G] by
performing only one additional matrix
computation involving the adjoint of the matrix
[G], [G]a. This procedure is described in greater
detail in reference [8], chapter 6. This corresponds
nicely to the usual circuit analysis problems where
just a few signals, usually outputs, need to be
characterized. Compare this to an approach that
solves the sensitivity problem by perturbing each
parameter. Clearly, the adjoint method is superior.

Sensitivity can be used to compute the combined
effect of all tolerances on a given output. The
result can be used in several ways. First the RSS
method computes the tolerance as the square root
of the sum of the product of the sensitivity and
the tolerance squared; that is, tol(v) = Sqrt(Σj
(tol(j) ∗ dv/dh

j
)2). For linear circuits, the result

turns out to be the same as the tolerance for a
Monte Carlo analysis.

The second use of sensitivity is to perform ex-
treme value analysis, EVA. In certain cases, this

Abstract - This paper discusses a currently proposed technique (sensitivity analysis) for analog fault analysis
and describes several new software techniques already in use to perform analysis, diagnosis, and isolation of
failures in analog and mixed-signal circuits and systems. Unique methods and algorithms for schematic entry,
setting of failure characteristics, definition of test strategies, recording of simulation-based measurements,
reduction of time-constrained simulation problems, creation of fault trees, and test sequencing are all discussed.

is the same as a worst case, but as we will see,
there is no guarantee. For extreme value compu-
tation, the sign of the outputs’ derivative will be
used to tell us which direction to move each pa-
rameter to make the parameters move the output
to its maximum or minimum value. Then 2 analy-
ses can be performed by first inserting the toler-
ance extremes that produce a maximum varia-
tion, and then inserting the ones that produce the
minimum value. By extreme value, we refer to
the parameter extremes, not the output. If a sec-
ond sensitivity analysis is done at the extremes,
the sign of the sensitivities are frequently oppo-
site their nominal value, indicating that a worst
case solution is found using some parameter val-
ues that are not at their extremes. This result oc-
curs with sufficient regularity to cast doubt upon
the benefits of extreme value analysis. However,
even when the sign of the derivatives are the
same, there is no guarantee that the worst case
value has been found.

When tolerances become large, the sensitivity
analysis obviously fails for digital and mixed sig-
nal circuits but it can also fail for linear circuits.
To account for large changes in sensitivity, more
work has to be done. Fortunately, the work only
grows in proportion to the number of parameters
that change by a large amount, using the tech-
niques in reference [8], chapter 8. Again, how-
ever, nonlinear circuits invalidate the results. Sev-
eral examples can be found in references [2,17].

Both RSS and EVA analyses are used to save
computational resources. In certain cases, they
produce the same results as Monte Carlo analy-
sis. For nonlinear circuits, these cases can only
be found by running the Monte Carlo analysis;
this defeats the purpose of using RSS or EVA at
all.

Failure analysis is an even more extreme case,
where catastrophic failures require a MORE com-
plex large parameter change approach which still
breaks down unpredictably for nonlinear circuits.

Again, the approach saves resources but can’t be
validated for nonlinear circuits without consum-
ing the resources that it saved.

For fault isolation, it’s useful to consider all test
points and circuit quantities in the system in order
to be able to select the best ones. When this
“overkill” in analysis is performed, the
computational savings vanish, and in fact, the
number of Monte Carlo simulations is frequently
less than the number of test points for which
tolerance are required, thereby making it the best
choice for conserving computational resources.

In references [9,10] claims are made that failures
can be inferred from tolerances using sensitivity
analysis. To accomplish this, a product specification
is required. Based on that specification, tolerances
are extracted using sensitivity analysis. The authors
claim that they can detect out-of-tolerance failures
based upon these data. The underlying assumption
is that test measurements are linearly related to
parameter changes. This is simply not true for
most circuits. The best use for sensitivity analysis is
to give the circuit designer insight; pointing him/her
towards potential problem areas. Extrapolating
sensitivity through nonlinearities is ill-advised.

III. A Robust Approach To Analog And Mixed-
Signal Test
Test design demands a large database of faulty
circuit behavior. The only practical method of
gathering the data in a reasonable time frame is
via simulation. With this in mind, a failure analy-
sis and test development tool has been created
based upon existing technology from two areas;
the analog and mixed-signal world of SPICE
simulation [11,12] and inference modeling [5,6].
The new tool is tailored to the specialized needs
of the test and reliability engineer, but is also use-
ful for the design engineer who must initiate the
test development process. The tool provides an
interactive design environment for the synthesis
of diagnostic tests, generation of fault dictionar-
ies, and the building of diagnostic fault trees.

Since the category of analog
and mixed-signal test
synthesis and sequencing
software is relatively new, a
number of unique techniques
were developed to solve key
parts of the FMEA (failure
mode effects analysis) and test
program set design process.

The software, outlined in fig-
ure 1, provides the aforemen-
tioned benefits. The schematic
entry program is specially en-
hanced to hold the entire de-
sign database, including part
and model values and toler-
ances, and all part failure mode characteristics.
It also contains a description of the various test
configurations and measurements for each test.

The failure analysis process begins by simulating
the circuit’s or system’s behavior with a single
failure mode inserted. The schematic builds the
required netlist for IsSpice4, a SPICE 3/XSPICE
based analog and mixed signal simulator [13-15],
using Windows-based ActiveX communication.
The simulation output data is processed using the
Berkeley SPICE 3 Interactive Command
Language (ICL) in order to automatically extract
the desired measurements from the simulation

Simulation
Directives

AC, DC,
Tran, etc.

Layers combined
into a configuration

C1 R4 390
Y8

Q2
2N2222

Q3
2N2222

R5 470

Q4
2N2222

VCC

X4
HL7801E

R6
1k

R9
470

R10
27

R11
330

vpd

vq4e
.01u

Sample Circuit

R7 820

V C C

V E E

X5
LM741N

VCC

VEE

R3 10k

C3

.01u

R12 10k

R13
5k

R14
100

C2 .01u

Vin

vin

vq3e

Vcc
5

Vee
-5

VEE

1

3
2

Layer #

Simulation
Netlist

Measurement
Directives

(Max, Min
Prop delay, etc.)

Circuit Description

ICL
Scripts

SPICE
Statements

Design Database: Part values,
tolerances, stimuli and failure modes

4

Schematic Configuration

Combination of Layers 1&3

Figure 2, A unique reconfigurable schematic tool allows different schematic layers to be combined in order to create
various circuit configurations. Simulation and measurement directives are then added to create multiple test
descriptions which are simulated for each and every fault in the system.

SPICE 3/XSPICE
Simulation Engine

Failure Modes
Definition

Part Tolerances
and Models

Failure Results
Reporting &

Database

Pass-Fail
Tolerance

Setting

Simulation
Output

Processing

Alarm Reporting

Schematic Entry
Design Database Schematic

Configurations

Simulation
Settings

Fault Tree
Generation

Test Synthesis &
SequencingReports &

Documentation

Test
Measurement

Definition
ICL (SPICE 3) Script
Commands

Monte Carlo,
User-Defined,
Expand-to-pass

Pseudo-Logic Sequence,
Test Entropy Rankings,
Test Description

OLE/ActiveX
Communication

Figure 1, A diagram of the software system implemented to provide automated
failure analysis and test program set development.

results. This process is continued automatically,
one fault at a time, until all of the faults are
simulated. The measurements are then parsed into
various report forms which contain user-defined
test limits. This database becomes the Fault
Dictionary. Finally, using the fault dictionary data,
tests are sequenced into a fault tree.

IIIa. Configurable Schematics
A long-standing problem in electrical and
mechanical circuit design has been the conflict
between the needs of the designer and the needs
of production and manufacturing. The main
vehicle for conveying the circuit specification is

the schematic diagram which is used to describe
the circuit topology as well as the details of how
production will build the hardware.

The designer is concerned with creating a circuit that
meets specifications. This is done chiefly through
various EDA tools, but mainly with circuit
simulation. The designer must build multiple test
configurations, add parasitic components and
stimuli, and even include system elements in the
simulation. A top-down design methodology,
where different levels of abstraction are inserted
for different components, is commonplace.
Modeling electrical behavior often results in
different representations for different test
configurations. In general, the schematic becomes
so cluttered with circuitry and data, that it must
be redrawn for production, greatly increasing the
probability of a transcription error.

It should be noted that simulation can and should be
used to check out the test setup. Using simulation to
evaluate and design test jigs speeds up the overall
process and doesn’t consume precious time on the
Automatic Test Equipment (ATE).

The need for a reconfigurable schematic capability
becomes even more mandatory when we analyze
the needs of the test program development engineer.
In order to be effective, the simulation process can
not become burdened with the bookkeeping

Table 1, SPICE3 Syntax for Various Failure Modes
Fault Before Insertion After Fault Insertion
Shorted Base Emitter Q1 12 19 24 QN2222A Q1 12 19 24 QN2222A

Rshort_19 19 24 .1
Open Resistor R3 17 0 10K R3 17_open 0 10K

Ropen_17 17_open 17 100Meg
Low Beta Q1 12 19 24 QN2222 Q1 12 19 24 Q1_Fail
Parametric fault .MODEL QN2222 NPN AF=1 BF=105 .MODEL Q1_Fail NPN AF=1 BF=10

BR=4 CJC=15.2P CJE=29.5P… BR=4 CJC=15.2P CJE=29.5P…
Resistor Stuck R1 6 0 1K R1 6 0 1K
2V below Vcc Rstuck_6 6_Stuck 6 10.00000

Bstuck_6 6_Stuck 0 V= Vcc- 2
Time Dependent L2 3 0 62U L2 3 0 62U
Inductor Fault Rstuck_3 3_Stuck 3 10.00000

Bstuck_3 3_Stuck 0 V=Time>10n ? 0 : V(3)

intricacies of multiple test fixtures and settings.
The designer must have a way to connect various
stimuli and loads to core circuitry and to group
the desired SPICE analyses and test
measurements with each schematic configuration.

Until now, the best approach has been to hide these
special configurations within subcircuits. While this
approach works for hierarchical schematic entry, it
doesn’t solve the problem of adding test equipment,
different stimulus inputs, or dealing with multiple
simulation scenarios in a reasonable fashion.

A test setup provides loads, voltage and current
stimuli and instrumentation connections at specific
points on the Unit Under Test (UUT). When viewed
in a broader context, the combination of the test setup
circuitry and the UUT can be considered to be a
circuit configuration in and of itself. Indeed, for
simulation purposes, the test setup circuitry must be
included as part of the circuit. Most Test Program
Sets (TPSs) implement multiple setups during the
testing sequence. This increases the simulation burden
by requiring a separate schematic for every test setup.

The system described by figure 2 addresses the
multiple test setup problem with a unique solution. It
allows the user to assign each setup/UUT
combination a different configuration name and
simulates all of the stand-alone configurations in a
batch operation. The setup/UUT combination,

defined during the schematic entry process, is
called a “circuit configuration”. Every circuit
configuration is composed of one or more
schematic layers. An active layer can be thought
of as a transparency that overlays other
transparencies such that as you view them, you
see the complete circuit configuration schematic.
Circuit nodes on the top layer connect with nodes
on underlying layers as if the drawing were
created on a single page. The schematic allows
mixing and matching of layers to form the
required circuit configurations. Any circuitry,
elements, or documentation can be placed on any
layer. While PCB layout software has had a
similar feature for quite some time, a configurable
schematic has not been implemented (to the best
of our knowledge). This is the first known
graphical entry method which is capable of
solving the Test - Simulation bridge using a
reconfigurable layered schematic approach.

IIIB. Failure Definition
Each component is defined by a set of nominal
device and model parameter attributes, as well
as parametric tolerances. Each component also
has a set of defined failure modes. Component
failures are well characterized by a finite number
of catastrophic failure modes. Unusual failure
modes get a lot of attention. For example, it is
unusual to find a PNP transistor die in an NPN
JANTXV package. Although these things do
happen, they are very rare. If acceptance testing
detects only 99% of all failed parts, then the
quality of the product increases 100 fold after
these tests are performed. For many products, the
increased quality guarantees that products with
undetected failures will not be delivered to the
customer.

Process faults could cause the shift of many param-
eters simultaneously. When this is a consideration,
as is usually the case for IC’s, the process param-
eters are monitored separately. If the process fails,
the unit is rejected before the acceptance test is per-
formed. Therefore, acceptance testing does not need

to account for multiple parametric failure modes.

Initially, parts include the catastrophic failure
modes as defined in the Navy’s CASS
(Consolidated Automated Support System) Red
Team Package[16]. However, a simple interface
is included to allow users to edit the predefined
failure modes or add their own catastrophic or
parametric failure modes (trace shorts, IC
bridging or interconnect failures, solder splashes,
low beta, device coupling, etc.). The
characteristics (open/short/stuck resistance) of
each failure mode can be defined by the user.

Failure modes are simulated by programmatically
generating the proper SPICE 3 syntax to describe
the failure. Any node on a part can be shorted to any
other node, opened, or stuck. The stuck condition
allows the user to attach a B element expression.
The B element is the Berkeley SPICE 3 arbitrary
dependent source which is capable of analog
behavioral modeling [11,12]. The expressions can
refer to other quantities in the design such as nodes
and currents, thus creating an unlimited fashion in
which to “stuck” a node. A series of examples are
shown in Table 1.

All of the failure mode definitions are carried out in a
graphical manner. No script writing or programming
is necessary in order to define or simulate a fault.
There is no need for the user to write or know the
required SPICE syntax, and the schematic is not
altered when a fault is inserted.

IIIC. Measurement Definition
In order to create a “test”, the user must combine
a circuit configuration with a set of SPICE
simulation directives and a desired measurement
which will be made on the resulting data.
Therefore, the simulator, or a data post-processing
program, must be available to extract and store
information from each desired test point
waveform. The former was chosen for this tool
and implemented using ICL which is available
in SPICE 3.

The software uses the IsSpice4 simulation engine
to perform the failure analysis. IsSpice4 includes
and expands upon the standard Berkeley SPICE
3 ICL. ICL is a set of commands that can direct
SPICE to perform various operations such as
running a particular analysis or changing a
component value. The commands, which look
and act like Visual Basic scripts, can be run
interactively or in a batch mode. IsSpice4 contains
ICL functions which allow SPICE 3 plots, or sets
of vectors (i.e. waveforms) to be scanned and
measured with imaginary cursors. In contrast to
traditional SPICE “dot” statements, ICL
commands are performed in order, one at a time.
This makes ICL scripts perfect for describing test
procedures.

A variety of functions are available for setting the
cursor positions and for measuring and processing
simulation results. As shown in figure 2, these
measurement scripts are combined with traditional
SPICE analysis directives and a test configuration
description to form a simulatable IsSpice4 netlist.
Virtually any measurement can be recorded on any
voltage, current, or power dissipation waveform such
as a maximum value, peak-peak value, rise/fall
time, propagation delay, Iddq values, and Fourier
coefficients.

IIID. Running The Failure Analysis
Before the failure analysis can begin, the test en-
gineer will have to decide which tests to perform,
how to set up each test, and the test limit bound-
aries. This last step can be time-consuming, es-
pecially if design specifications are not available.
Therefore, special methods are available for set-
ting limits on groups of tests using default toler-
ances, Monte Carlo simulation results or a unique
“Expand to Pass” feature which pushes out the
test limit boundaries. This last method allows the
designer to easily account for variations in the
environment or test equipment which might oth-
erwise cause false failures on tests with tight tol-
erances.

Once the test limits are set, failure mode simulation
can proceed one fault mode at a time or in an
automatic fashion until all of the fault modes are
simulated.

IV. Overcoming Simulation Runtime Issues
There are several ways to overcome simulation
runtime issues associated with the large number of
fault simulations that must be performed. The first is
to use a faster computer or many fast computers to
perform the runs more quickly and in parallel. In
addition, test development for diagnostic cases
usually proceeds along the path of functional testing.
This is simply not mandatory, or the most efficient
path, in most cases. The test engineer is limited by
his knowledge of the circuit operation which is most
easily revealed through functional testing. But for
diagnostic test development, simpler test methods
can be employed which greatly reduce simulation
runtimes [2].

Past work [9,10] implies that simulation runtime is a
major inhibitor to the proposed methodology.
However, these remarks tend to ignore recent
developments in the area of model optimization and
behavioral modeling, Analog Hardware Description
Language (AHDL) modeling, and current simulator
and computer performance.

Figure 3, A farm of computers running SPICE simula-
tions in parallel is used to dramatically reduce the required
computational demands of failure analysis. The SpiceFarm
can be made up of a bank of locally available computers or
accessed over the Internet.

SpiceFarm™Farm Job Manager

Worker 1 Worker 2 Worker n

Internet

Local
SpiceFarm™

IP Address

A newly developed method uses a “farm” of
computers. Referring to figure 3, the user has
control over whether the simulations are run on
the local computer, a local set of computers, or at
a remote site housing a bank of fast computers.
A farm job manager appears as an IP address to
the user and receives the simulation jobs over the
Internet. The simulations are parceled out to local
“workers”. The results are sent back to the user
for display as the jobs are finished. The data sent
between the user’s computer and the farm is
encrypted, greatly easing security concerns.

The concept of a farm of computers has been
implemented by the software developer, Intusoft,
and is called the SpiceFarm™.

V. Results Reporting
The results for each failure simulation are
reported in a special dialog, as shown in figure 4.
A tree list lists each drawing configuration, the
simulation setups, the individual analyses in each
simulation, and the user-defined measurements.
The measurements are made and any number of
test points (i.e. waveforms). The results of each
test are displayed on the right. There are two other
display types which are not shown; one that shows
the results of a single test for all of the failure
modes, and another that shows a histogram of a
test measurement vs. all failure modes.

The meter on the left center of the report is used as a
quick indicator of the measurement’s pass-fail status.
A long bar extending to the left or right of the meter
center indicates that the associated failure mode
moves the measured value outside of the pass/fail
limits by more than 3 times the difference between
the upper and lower pass/fail limits (e.g., a very high
probability of failure detection). A short bar indicates
that the failure is detected but is out of limits by less
than one tolerance range (e.g. could be an uncertain
detection and may merit further investigation using
Monte Carlo techniques). Together, these results
dialogs constitute the fault dictionary and may be used
to populate various third party reliability tools with
failure analysis data that is normally otherwise
generated with guesses, intuition, or breadboard
derived values.

VI. Synthesizing Tests
The process of fault tree generation takes place
in the Fault Tree design dialog (figure 5) using a
novel test sequencing technique [1].

It is generally accepted that the best fault tree is one
that arrives at the highest probability failure
conclusion with the least amount of work. The best
test is then the test that produces the optimum fault
tree, free from errors. Several methods for selecting
the best test out of those remaining have been
proposed [3,4]. Given an equal probability of
occurrence for each fault, the best test is usually the

Figure 4, A sample dialog
showing the pass-fail
results of a failure
simulation with an open
resistor. The left side of
the tree shows a list of
the measurements to be
performed. On the right
side are the test results
and limits. At the bottom
(R2:open) any fault in the
system can be selected
using the drop-down list
and its effects reviewed.

one that evenly divides the input group between
the pass and fail group. A somewhat more
complex procedure has also been proposed. Note
that a general solution, made by exhaustive
search, rapidly becomes intractable [4].

Tests are used to detect faults using the logic il-
lustrated in figure 6. Each test has one input and
2 outputs. The input contains a list of failure
modes, and the test performs the logic which is
necessary to classify the outcome as pass or fail.
Each outcome has a list of failure modes (ambi-
guity groups) that can be passed-on to succes-
sive tests. The process of selecting the best test
in each ordered group results in a binary fault
tree. After selecting a test, successive tests are
placed on the pass and fail nodes of the tree until
no more useful information is gained.

If the component failure rate is used to weight
each fault in the ambiguity group, then we can
assign a probability of detection to the pass group,
p, and the fail group, q. What is really determined
is the probability that a test will pass (p) and the
probability that a test will fail (q). Then p + q =
1.0, because the test will either pass or fail. The
input probability must be 1.0 because one of the

conclusions in the current ambiguity group will
be the answer. Weighting is used to reassess
individual failure probability, given that the group
is the answer at this point in the isolation process.
Now the probability of reaching each conclusion
can be predicted, based upon failure weights. The
best fault tree can now be defined as the one
which arrives at each failure conclusion with the
least amount of work. If each test is equally
difficult, then the work is the summation of the
probabilities of reaching each conclusion. To
compute these probabilities, we simply traverse
the tree for each conclusion, multiplying the
probabilities of each successive outcome, and
then summing the resultant probabilities for each

Figure 5, The following
dialog is used to
sequence tests into a
fault (diagnostic) tree.
The resulting test
sequence can be used
for fault isolation or a
product acceptance test.
The Fault Tree struc-
ture shows the test and
the number of faults in
the ambiguity groups
(pass first, then fail).
For instance, L4[I]lo 1,
2 would have 1 fault in
the pass ambiguity
group and 2 in the fail
ambiguity group. The
description of each
highlighted test is
shown to the right.

Test
Group

Input
Group

Fail = Input and Test

Pass = Input minus Test

C1::Short
R2::Open
Q2::OpenC
...

C1::Short
C2::Open

R2::Open
Q2::OpenC
...

C1::Short
...

Input
C1::Short
R2::Open
Q2::OpenC
...

Exit here if test fails
Exit here if

test passes
Figure 6,
Logical
groups of the
input and test
ambiguity
groups.

conclusion. The best result from this procedure
is 1.0. The figure of merit tells us how well we
did, and can be used to compare fault trees.
Clearly, we must select tests which produce high
probability outcomes. To find these tests, we
compute the entropy of each useful test that is
available: Entropy = -p*log(p) -q*log(q)

According to information theory, the highest entropy
test contains the most information. Proceeding
in this manner tends to produce efficient
diagnostic or product acceptance trees. Tests may
be grouped into a common pool, or group, for
selection. This allows tests to be ordered not only
by difficulty, but also by logical requirements;
for example, high temperature vs. low
temperature and safe-to-start vs. operating point.

Tests have only 2 outcomes, pass or fail; but a
measurement can be compared with many
different limits, creating a large number of
possible tests for each measurement. For
example, a binary measurement passes if the
result is within the test limits, and fails if it is

outside of the limits. A tertiary measurement is
divided into 3 states; fail low, pass and fail high.

Ambiguity groups are created for each test. Test
ambiguity groups contain a list of faults that can be
detected; that is, faults that will be reported to the
fail outcome it they are in the input fault group. The
subset of the fault universe that goes into a test must
be present in either the pass or fail outcome.

Measured values can migrate across pass-fail
boundaries because of component and test
tolerances. In order to produce robust tests, the
concept of a guard band has been added to the
test sequencing process. The guard band is
measured in pass tolerance units and is used to
eliminate from consideration any test that has
fault detections within the guard band limit of
the test boundary. Setting the test limit to the
center of the guard band produces a test that is
least likely to give false results.

Referring to figure 5, several groups of tests are
available. They are shown in the Group Sequence

Figure 7, Several types of reports can be output. Shown above is a portion of the fault tree which points to the V(3)
(voltage at node 3) test. The matching test description and hardware independent C-like pseudo-logic code to
duplicate the fault tree are shown to the center and right, respectively.

and Selection section. Any of the test groupings
can be activated using the Sequence drop-down
list. The resulting ranking of the tests, in order of
best to worst, is shown in the Test-Entropy sec-
tion. All of the tests with the same sequence num-
ber will be evaluated at the same time. A fault
tree can be sequenced from the activated tests
manually, by hitting the insert button, or auto-
matically, by hitting the AutoBuild button. This
second action builds the entire fault tree and pro-
vides a percentage coverage value along with a
summary of the remove/replace callout groups.

The test synthesis process culminates in the gen-
eration of pseudo-code to drive automatic test
equipment (ATE). Two ATE independent formats
are generated, describing the structure of the tests
(figure 7); an Atlas-like version and a C code
version.

VII. CONCLUSIONS
The simulation techniques employed here act as
a “force multiplier” for development of
diagnostics for analog and mixed signal circuits.
In a relatively short time, compared with current
methods, it was possible to analyze the failure
characteristics of a design, generate a variety of
tests, determine the failure mode detection
characteristics of each test, and sequence these
tests into an effective diagnostic fault tree.

Simulation has proven to be an effective method
for identifying problem areas in fault detection.
Simulation reveals key problem areas: first, by
identifying the low probability fault detections
for individual tests; and second, by providing an
infrastructure for further circuit analysis when
integration results do not agree with simulator
predictions. Reasonable simulation times can be
achieved by running multiple simulations in
parallel using the “SpiceFarm” approach
described herein. In addition, the new tools and
techniques allow the engineer to study various
circuit failure mechanisms, failure propagation
paths and failure outcomes.

Accounting for the percentage of detection and
isolation of failure modes is a difficult problem for
the TPS developer. While accountability is easy to
achieve in simple circuit analysis, it becomes
considerably more difficult as mixed-signal
systems are analyzed. The preceding techniques
provide a variety of significant advantages.

REFERENCES

[1] Larry Meares, “Designing Tests Using Simulation”, Evaluation
Engineering Magazine, Parts I&II, April-May, 1998

[2] Charles Hymowitz, Larry Meares, Bill Halal, “New Techniques
for Fault Diagnosis and Isolation of Switched Mode Power
Supplies”,1997 PCIM Conference

[3] Sharon Goodall, “Analog/Mixed Signal Fault Diagnosis
Algorithm and Tool Review”,1994 AutoTestCon Proceedings,
pp. 351-359.

[4] W.R. Simpson and J.W. Sheppard, “Fault Isolation in an
Integrated Diagnostic Environment, “IEEE D&T,
Vol.10,No.1,Mar. 1993, pp52-66.

[5] C.Y. Pan and K.T. Cheng, “Test Generation for Linear, Time
Invariant Analog Circuits, 3rd IEEE Intl. Mixed-Signal Testing
Workshop, June 3-6, 1997.

[6] Harry H. Dill, “A Comparison of Conventional and Inference Model
Based TPS Development Processes”, AutoTestCon ‘95 Proceedings,
pp 160-168.

[7] Harry H. Dill, “A Comparison of Conventional and Inference Model
Based TPS Development Processes”, 1997 AutoTestCon
Proceedings.

[8] Jiri Vlach, Kishore Singhal, “Computer Methods for Circuit
Analysis and Design”, 2nd Ed., Van Nostrand Reinhold, 1994

[9] N.B. Hamida, K. Saab, D. Marche, B. Kaminska, and G. Quesnel,
“LIMSoft: Automated Tool for Design and Test Integration of
Analog Circuits”, 2nd IEEE International Mixed Signal Testing
Workshop, Quebec City, Canada, May 15-18, 1996.

[10] N.B. Hamida and B. Kaminska, “Analog Circuit Fault Diagnosis
Based on Sensitivity Computation and Functional Testing”,
IEEE Design and Test of Computers, March 1992, pp.30-39.

[11] L.W. Nagel and D.O. Pederson, Simulation program with
integrated circuit emphasis, ERL Memo No. ERL-M520,
University of California, Berkeley, May 1975.

[12] B. Johnson, T. Quarles, A.R. Newton, D.O. Pederson, A.
Sangiovanni-Vincentelli, SPICE 3F User’s Guide, University of
California, Berkeley, Oct. 1992.

[13] “IsSpice4 User’s Guide”, Intusoft, P.O. Box 710, San Pedro, CA
90733-0710, 1997.

[14] Fred Cox, W. Kuhn, J. Murray, S. Tynor, “Code-Level Modeling in
XSPICE”, Proceedings of the 1992 Intl. Syp. on Circuits and
Systems, May 1992, IEEE 0-7803-0593-0/92.

[15] “XSPICE Users Manual”, Georgia Institute of Research, Georgia
Institute of Technology, Atlanta GA 30332-0800.

[16] CASS Red Team Package data item DI-ATTS-80285B, Fig. 1
- SRA/SRU Fault Accountability Matrix Table, pg 11.

[17] Intusoft Newsletter, Various Issues #51 Nov. 1997, #52 Feb. 1998,
#53 April 1998, Copyright Intusoft 1986-1998

